There are pronounced differences in the extent to which industrial and academic AI labs use computing resources. We provide a data-driven survey of the role of the compute divide in shaping machine learning research. We show that a compute divide has coincided with a reduced representation of academic-only research teams in compute intensive research topics, especially foundation models. We argue that, academia will likely play a smaller role in advancing the associated techniques, providing critical evaluation and scrutiny, and in the diffusion of such models. Concurrent with this change in research focus, there is a noticeable shift in academic research towards embracing open source, pre-trained models developed within the industry. To address the challenges arising from this trend, especially reduced scrutiny of influential models, we recommend approaches aimed at thoughtfully expanding academic insights. Nationally-sponsored computing infrastructure coupled with open science initiatives could judiciously boost academic compute access, prioritizing research on interpretability, safety and security. Structured access programs and third-party auditing may also allow measured external evaluation of industry systems.
Large Language Models (LLMs) demonstrate strong capability across multiple tasks, including machine translation. Our study focuses on evaluating Llama2's machine translation capabilities and exploring how translation depends on languages in its training data. Our experiments show that the 7B Llama2 model yields above 10 BLEU score for all languages it has seen, but not always for languages it has not seen. Most gains for those unseen languages are observed the most with the model scale compared to using chat versions or adding shot count. Furthermore, our linguistic distance analysis reveals that syntactic similarity is not always the primary linguistic factor in determining translation quality. Interestingly, we discovered that under specific circumstances, some languages, despite having significantly less training data than English, exhibit strong correlations comparable to English. Our discoveries here give new perspectives for the current landscape of LLMs, raising the possibility that LLMs centered around languages other than English may offer a more effective foundation for a multilingual model.
The adaption of multilingual pre-trained Large Language Models (LLMs) into eloquent and helpful assistants is essential to facilitate their use across different language regions. In that spirit, we are the first to conduct an extensive study of the performance of multilingual models on parallel, multi-turn instruction-tuning benchmarks across a selection of the most-spoken Indo-European languages. We systematically examine the effects of language and instruction dataset size on a mid-sized, multilingual LLM by instruction-tuning it on parallel instruction-tuning datasets. Our results demonstrate that instruction-tuning on parallel instead of monolingual corpora benefits cross-lingual instruction following capabilities by up to 4.6%. Furthermore, we show that the Superficial Alignment Hypothesis does not hold in general, as the investigated multilingual 7B parameter model presents a counter-example requiring large-scale instruction-tuning datasets. Finally, we conduct a human annotation study to understand the alignment between human-based and GPT-4-based evaluation within multilingual chat scenarios.
This paper presents a novel approach to measuring statistical dependence between two random processes (r.p.) using a positive-definite function called the Normalized Cross Density (NCD). NCD is derived directly from the probability density functions of two r.p. and constructs a data-dependent Hilbert space, the Normalized Cross-Density Hilbert Space (NCD-HS). By Mercer's Theorem, the NCD norm can be decomposed into its eigenspectrum, which we name the Multivariate Statistical Dependence (MSD) measure, and their sum, the Total Dependence Measure (TSD). Hence, the NCD-HS eigenfunctions serve as a novel embedded feature space, suitable for quantifying r.p. statistical dependence. In order to apply NCD directly to r.p. realizations, we introduce an architecture with two multiple-output neural networks, a cost function, and an algorithm named the Functional Maximal Correlation Algorithm (FMCA). With FMCA, the two networks learn concurrently by approximating each other's outputs, extending the Alternating Conditional Expectation (ACE) for multivariate functions. We mathematically prove that FMCA learns the dominant eigenvalues and eigenfunctions of NCD directly from realizations. Preliminary results with synthetic data and medium-sized image datasets corroborate the theory. Different strategies for applying NCD are proposed and discussed, demonstrating the method's versatility and stability beyond supervised learning. Specifically, when the two r.p. are high-dimensional real-world images and a white uniform noise process, FMCA learns factorial codes, i.e., the occurrence of a code guarantees that a specific training set image was present, which is important for feature learning.
The prediction has served as a crucial scientific method in modern social studies. With the recent advancement of Large Language Models (LLMs), efforts have been made to leverage LLMs to predict the human features in social life, such as presidential voting. These works suggest that LLMs are capable of generating human-like responses. However, we find that the promising performance achieved by previous studies is because of the existence of input shortcut features to the response. In fact, by removing these shortcuts, the performance is reduced dramatically. To further revisit the ability of LLMs, we introduce a novel social prediction task, Soc-PRF Prediction, which utilizes general features as input and simulates real-world social study settings. With the comprehensive investigations on various LLMs, we reveal that LLMs cannot work as expected on social prediction when given general input features without shortcuts. We further investigate possible reasons for this phenomenon that suggest potential ways to enhance LLMs for social prediction.
Graph Neural Networks (GNNs) have shown promising potential in graph representation learning. The majority of GNNs define a local message-passing mechanism, propagating information over the graph by stacking multiple layers. These methods, however, are known to suffer from two major limitations: over-squashing and poor capturing of long-range dependencies. Recently, Graph Transformers (GTs) emerged as a powerful alternative to Message-Passing Neural Networks (MPNNs). GTs, however, have quadratic computational cost, lack inductive biases on graph structures, and rely on complex Positional/Structural Encodings (SE/PE). In this paper, we show that while Transformers, complex message-passing, and SE/PE are sufficient for good performance in practice, neither is necessary. Motivated by the recent success of State Space Models (SSMs), such as Mamba, we present Graph Mamba Networks (GMNs), a general framework for a new class of GNNs based on selective SSMs. We discuss and categorize the new challenges when adapting SSMs to graph-structured data, and present four required and one optional steps to design GMNs, where we choose (1) Neighborhood Tokenization, (2) Token Ordering, (3) Architecture of Bidirectional Selective SSM Encoder, (4) Local Encoding, and dispensable (5) PE and SE. We further provide theoretical justification for the power of GMNs. Experiments demonstrate that despite much less computational cost, GMNs attain an outstanding performance in long-range, small-scale, large-scale, and heterophilic benchmark datasets.
Large Language Models (LLMs) possess the potential to exert substantial influence on public perceptions and interactions with information. This raises concerns about the societal impact that could arise if the ideologies within these models can be easily manipulated. In this work, we investigate how effectively LLMs can learn and generalize ideological biases from their instruction-tuning data. Our findings reveal a concerning vulnerability: exposure to only a small amount of ideologically driven samples significantly alters the ideology of LLMs. Notably, LLMs demonstrate a startling ability to absorb ideology from one topic and generalize it to even unrelated ones. The ease with which LLMs' ideologies can be skewed underscores the risks associated with intentionally poisoned training data by malicious actors or inadvertently introduced biases by data annotators. It also emphasizes the imperative for robust safeguards to mitigate the influence of ideological manipulations on LLMs.
We investigate a variation of the 3D registration problem, named multi-model 3D registration. In the multi-model registration problem, we are given two point clouds picturing a set of objects at different poses (and possibly including points belonging to the background) and we want to simultaneously reconstruct how all objects moved between the two point clouds. This setup generalizes standard 3D registration where one wants to reconstruct a single pose, e.g., the motion of the sensor picturing a static scene. Moreover, it provides a mathematically grounded formulation for relevant robotics applications, e.g., where a depth sensor onboard a robot perceives a dynamic scene and has the goal of estimating its own motion (from the static portion of the scene) while simultaneously recovering the motion of all dynamic objects. We assume a correspondence-based setup where we have putative matches between the two point clouds and consider the practical case where these correspondences are plagued with outliers. We then propose a simple approach based on Expectation-Maximization (EM) and establish theoretical conditions under which the EM approach converges to the ground truth. We evaluate the approach in simulated and real datasets ranging from table-top scenes to self-driving scenarios and demonstrate its effectiveness when combined with state-of-the-art scene flow methods to establish dense correspondences.
Work on instruction-tuned Large Language Models (LLMs) has used automatic methods based on text overlap and LLM judgments as cost-effective alternatives to human evaluation. In this paper, we study the reliability of such methods across a broad range of tasks and in a cross-lingual setting. In contrast to previous findings, we observe considerable variability in correlations between automatic methods and human evaluators when scores are differentiated by task type. Specifically, the widely-used ROUGE-L metric strongly correlates with human judgments for short-answer English tasks but is unreliable in free-form generation tasks and cross-lingual transfer. The effectiveness of GPT-4 as an evaluator depends on including reference answers when prompting for assessments, which can lead to overly strict evaluations in free-form generation tasks. In summary, we find that, while automatic evaluation methods can approximate human judgements under specific conditions, their reliability is highly context-dependent. Our findings enhance the understanding of how automatic methods should be applied and interpreted when developing and evaluating instruction-tuned LLMs.
Recent work shows that in-context learning and optimization of in-context examples (ICE) can significantly improve the accuracy of large language models (LLMs) on a wide range of tasks, leading to an apparent consensus that ICE optimization is crucial for better performance. However, most of these studies assume a fixed or no instruction provided in the prompt. We challenge this consensus by investigating the necessity of optimizing ICE when task-specific instructions are provided and find that there are tasks for which it yields diminishing returns. In particular, using a diverse set of tasks and a systematically created instruction set with gradually added details, we find that as the prompt instruction becomes more detailed, the returns on ICE optimization diminish. To characterize this behavior, we introduce a task-specific metric called Normalized Invariability to Choice of Examples (NICE) that quantifies the learnability of tasks from a given instruction, and provides a heuristic that helps decide whether to optimize instructions or ICE for a new task. Given a task, the proposed metric can reliably predict the utility of optimizing ICE compared to using random ICE.
Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.