Simulation-based digital twins must provide accurate, robust and reliable digital representations of their physical counterparts. Quantifying the uncertainty in their predictions plays, therefore, a key role in making better-informed decisions that impact the actual system. The update of the simulation model based on data must be then carefully implemented. When applied to complex standing structures such as bridges, discrepancies between the computational model and the real system appear as model bias, which hinders the trustworthiness of the digital twin and increases its uncertainty. Classical Bayesian updating approaches aiming to infer the model parameters often fail at compensating for such model bias, leading to overconfident and unreliable predictions. In this paper, two alternative model bias identification approaches are evaluated in the context of their applicability to digital twins of bridges. A modularized version of Kennedy and O'Hagan's approach and another one based on Orthogonal Gaussian Processes are compared with the classical Bayesian inference framework in a set of representative benchmarks. Additionally, two novel extensions are proposed for such models: the inclusion of noise-aware kernels and the introduction of additional variables not present in the computational model through the bias term. The integration of such approaches in the digital twin corrects the predictions, quantifies their uncertainty, estimates noise from unknown physical sources of error and provides further insight into the system by including additional pre-existing information without modifying the computational model.
The Reconfigurable Routing Problem (RRP) in hybrid networks is, in short, the problem of finding settings for optical switches augmenting a static network so as to achieve optimal delivery of some given workload. The problem has previously been studied in various scenarios with both tractable and NP-hardness results obtained. However, the data center and interconnection networks to which the problem is most relevant are almost always such that the static network is highly structured whereas all previous results assume that the static network can be arbitrary (which makes existing computational hardness results less technologically relevant and also easier to obtain). In this paper, and for the first time, we prove various intractability results for RRP where the underlying static network is highly structured, for example consisting of a hypercube, and also extend some existing tractability results.
Most existing neural network-based approaches for solving stochastic optimal control problems using the associated backward dynamic programming principle rely on the ability to simulate the underlying state variables. However, in some problems, this simulation is infeasible, leading to the discretization of state variable space and the need to train one neural network for each data point. This approach becomes computationally inefficient when dealing with large state variable spaces. In this paper, we consider a class of this type of stochastic optimal control problems and introduce an effective solution employing multitask neural networks. To train our multitask neural network, we introduce a novel scheme that dynamically balances the learning across tasks. Through numerical experiments on real-world derivatives pricing problems, we prove that our method outperforms state-of-the-art approaches.
The capacity to isolate and recognize individual characters from facsimile images of papyrus manuscripts yields rich opportunities for digital analysis. For this reason the `ICDAR 2023 Competition on Detection and Recognition of Greek Letters on Papyri' was held as part of the 17th International Conference on Document Analysis and Recognition. This paper discusses our submission to the competition. We used an ensemble of YOLOv8 models to detect and classify individual characters and employed two different approaches for refining the character predictions, including a transformer based DeiT approach and a ResNet-50 model trained on a large corpus of unlabelled data using SimCLR, a self-supervised learning method. Our submission won the recognition challenge with a mAP of 42.2%, and was runner-up in the detection challenge with a mean average precision (mAP) of 51.4%. At the more relaxed intersection over union threshold of 0.5, we achieved the highest mean average precision and mean average recall results for both detection and classification. We ran our prediction pipeline on more than 4,500 images from the Oxyrhynchus Papyri to illustrate the utility of our approach, and we release the results publicly in multiple formats.
Graph Neural Networks (GNNs) have emerged in recent years as a powerful tool to learn tasks across a wide range of graph domains in a data-driven fashion; based on a message passing mechanism, GNNs have gained increasing popularity due to their intuitive formulation, closely linked with the Weisfeiler-Lehman (WL) test for graph isomorphism, to which they have proven equivalent. From a theoretical point of view, GNNs have been shown to be universal approximators, and their generalization capability (namely, bounds on the Vapnik Chervonekis (VC) dimension) has recently been investigated for GNNs with piecewise polynomial activation functions. The aim of our work is to extend this analysis on the VC dimension of GNNs to other commonly used activation functions, such as sigmoid and hyperbolic tangent, using the framework of Pfaffian function theory. Bounds are provided with respect to architecture parameters (depth, number of neurons, input size) as well as with respect to the number of colors resulting from the 1-WL test applied on the graph domain. The theoretical analysis is supported by a preliminary experimental study.
The rapid progress in personalized speech generation technology, including personalized text-to-speech (TTS) and voice conversion (VC), poses a challenge in distinguishing between generated and real speech for human listeners, resulting in an urgent demand in protecting speakers' voices from malicious misuse. In this regard, we propose a speaker protection method based on adversarial attacks. The proposed method perturbs speech signals by minimally altering the original speech while rendering downstream speech generation models unable to accurately generate the voice of the target speaker. For validation, we employ the open-source pre-trained YourTTS model for speech generation and protect the target speaker's speech in the white-box scenario. Automatic speaker verification (ASV) evaluations were carried out on the generated speech as the assessment of the voice protection capability. Our experimental results show that we successfully perturbed the speaker encoder of the YourTTS model using the gradient-based I-FGSM adversarial perturbation method. Furthermore, the adversarial perturbation is effective in preventing the YourTTS model from generating the speech of the target speaker. Audio samples can be found in //voiceprivacy.github.io/Adeversarial-Speech-with-YourTTS.
We show that the known list-decoding algorithms for univariate multiplicity and folded Reed-Solomon (FRS) codes can be made to run in nearly-linear time. This yields, to our knowledge, the first known family of codes that can be decoded in nearly linear time, even as they approach the list decoding capacity. Univariate multiplicity codes and FRS codes are natural variants of Reed-Solomon codes that were discovered and studied for their applications to list-decoding. It is known that for every $\epsilon >0$, and rate $R \in (0,1)$, there exist explicit families of these codes that have rate $R$ and can be list-decoded from a $(1-R-\epsilon)$ fraction of errors with constant list size in polynomial time (Guruswami & Wang (IEEE Trans. Inform. Theory, 2013) and Kopparty, Ron-Zewi, Saraf & Wootters (SIAM J. Comput. 2023)). In this work, we present randomized algorithms that perform the above tasks in nearly linear time. Our algorithms have two main components. The first builds upon the lattice-based approach of Alekhnovich (IEEE Trans. Inf. Theory 2005), who designed a nearly linear time list-decoding algorithm for Reed-Solomon codes approaching the Johnson radius. As part of the second component, we design nearly-linear time algorithms for two natural algebraic problems. The first algorithm solves linear differential equations of the form $Q\left(x, f(x), \frac{df}{dx}, \dots,\frac{d^m f}{dx^m}\right) \equiv 0$ where $Q$ has the form $Q(x,y_0,\dots,y_m) = \tilde{Q}(x) + \sum_{i = 0}^m Q_i(x)\cdot y_i$. The second solves functional equations of the form $Q\left(x, f(x), f(\gamma x), \dots,f(\gamma^m x)\right) \equiv 0$ where $\gamma$ is a high-order field element. These algorithms can be viewed as generalizations of classical algorithms of Sieveking (Computing 1972) and Kung (Numer. Math. 1974) for computing the modular inverse of a power series, and might be of independent interest.
In a variety of application areas, there is interest in assessing evidence of differences in the intensity of event realizations between groups. For example, in cancer genomic studies collecting data on rare variants, the focus is on assessing whether and how the variant profile changes with the disease subtype. Motivated by this application, we develop multiresolution nonparametric Bayes tests for differential mutation rates across groups. The multiresolution approach yields fast and accurate detection of spatial clusters of rare variants, and our nonparametric Bayes framework provides great flexibility for modeling the intensities of rare variants. Some theoretical properties are also assessed, including weak consistency of our Dirichlet Process-Poisson-Gamma mixture over multiple resolutions. Simulation studies illustrate excellent small sample properties relative to competitors, and we apply the method to detect rare variants related to common variable immunodeficiency from whole exome sequencing data on 215 patients and over 60,027 control subjects.
We develop qutrit circuit models for discrete-time three-state quantum walks on Cayley graphs corresponding to Dihedral groups $D_N$ and the additive groups of integers modulo any positive integer $N$. The proposed circuits comprise of elementary qutrit gates such as qutrit rotation gates, qutrit-$X$ gates and two-qutrit controlled-$X$ gates. First, we propose qutrit circuit representation of special unitary matrices of order three, and the block diagonal special unitary matrices with $3\times 3$ diagonal blocks, which correspond to multi-controlled $X$ gates and permutations of qutrit Toffoli gates. We show that one-layer qutrit circuit model need $O(3nN)$ two-qutrit control gates and $O(3N)$ one-qutrit rotation gates for these quantum walks when $N=3^n$. Finally, we numerically simulate these circuits to mimic its performance such as time-averaged probability of finding the walker at any vertex on noisy quantum computers. The simulated results for the time-averaged probability distributions for noisy and noiseless walks are further compared using KL-divergence and total variation distance. These results show that noise in gates in the circuits significantly impacts the distributions than amplitude damping or phase damping errors.
Dynamical systems across the sciences, from electrical circuits to ecological networks, undergo qualitative and often catastrophic changes in behavior, called bifurcations, when their underlying parameters cross a threshold. Existing methods predict oncoming catastrophes in individual systems but are primarily time-series-based and struggle both to categorize qualitative dynamical regimes across diverse systems and to generalize to real data. To address this challenge, we propose a data-driven, physically-informed deep-learning framework for classifying dynamical regimes and characterizing bifurcation boundaries based on the extraction of topologically invariant features. We focus on the paradigmatic case of the supercritical Hopf bifurcation, which is used to model periodic dynamics across a wide range of applications. Our convolutional attention method is trained with data augmentations that encourage the learning of topological invariants which can be used to detect bifurcation boundaries in unseen systems and to design models of biological systems like oscillatory gene regulatory networks. We further demonstrate our method's use in analyzing real data by recovering distinct proliferation and differentiation dynamics along pancreatic endocrinogenesis trajectory in gene expression space based on single-cell data. Our method provides valuable insights into the qualitative, long-term behavior of a wide range of dynamical systems, and can detect bifurcations or catastrophic transitions in large-scale physical and biological systems.
The method is based on the preliminary transformation of the traditionally used matrices or adjacency lists in the graph theory into refined projections free from redundant information, and their subsequent use in constructing shortest paths. Unlike adjacency matrices and lists based on enumerating binary adjacency relations, the refined projection is based on enumerating more complex relations: simple paths from a given graph vertex that are shortest. The preliminary acquisition of such projections reduces the algorithmic complexity of applications using them and improves their volumetric and real-time characteristics to linear ones for a pair of vertices. The class of graphs considered is extended to mixed graphs.