亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper begins with a description of methods for estimating probability density functions for images that reflects the observation that such data is usually constrained to lie in restricted regions of the high-dimensional image space - not every pattern of pixels is an image. It is common to say that images lie on a lower-dimensional manifold in the high-dimensional space. However, although images may lie on such lower-dimensional manifolds, it is not the case that all points on the manifold have an equal probability of being images. Images are unevenly distributed on the manifold, and our task is to devise ways to model this distribution as a probability distribution. In pursuing this goal, we consider generative models that are popular in AI and computer vision community. For our purposes, generative/probabilistic models should have the properties of 1) sample generation: it should be possible to sample from this distribution according to the modelled density function, and 2) probability computation: given a previously unseen sample from the dataset of interest, one should be able to compute the probability of the sample, at least up to a normalising constant. To this end, we investigate the use of methods such as normalising flow and diffusion models. We then show that such probabilistic descriptions can be used to construct defences against adversarial attacks. In addition to describing the manifold in terms of density, we also consider how semantic interpretations can be used to describe points on the manifold. To this end, we consider an emergent language framework which makes use of variational encoders to produce a disentangled representation of points that reside on a given manifold. Trajectories between points on a manifold can then be described in terms of evolving semantic descriptions.

相關內容

Change blindness is a phenomenon where an individual fails to notice alterations in a visual scene when a change occurs during a brief interruption or distraction. Understanding this phenomenon is specifically important for the technique that uses a visual stimulus, such as Virtual Reality (VR) or Augmented Reality (AR). Previous research had primarily focused on 2D environments or conducted limited controlled experiments in 3D immersive environments. In this paper, we design and conduct two formal user experiments to investigate the effects of different visual attention-disrupting conditions (Flickering and Head-Turning) and object alternative conditions (Removal, Color Alteration, and Size Alteration) on change blindness detection in VR and AR environments. Our results reveal that participants detected changes more quickly and had a higher detection rate with Flickering compared to Head-Turning. Furthermore, they spent less time detecting changes when an object disappeared compared to changes in color or size. Additionally, we provide a comparison of the results between VR and AR environments.

This paper brings an in detail Genetic Algorithm (GA) based combinatorial optimization method used for the optimal design of the water distribution network (WDN) of Gurudeniya Service Zone, Sri Lanka. Genetic Algorithm (GA) mimics the survival of the fittest principle of nature to develop a search process. Methodology employs fuzzy combinations of pipe diameters to check their suitability to be considered as the cost effective optimal design solutions. Furthermore, the hydraulic constraints were implicitly evaluated within the GA itself in its aim to reaching the global optimum solution. Upon analysis, the results of this approach delivered agreeable design outputs. In addition, the comparison made between the results obtained by a previous study inspired by the Honey Bee Mating Optimization (HBMO) Algorithm and results obtained by the GA based approach, proves competency of GA for the optimal design of water distribution network in Gurudeniya Service Zone, Sri Lanka.

Segmentation and spatial alignment of ultrasound (US) imaging data acquired in the in first trimester are crucial for monitoring human embryonic growth and development throughout this crucial period of life. Current approaches are either manual or semi-automatic and are therefore very time-consuming and prone to errors. To automate these tasks, we propose a multi-atlas framework for automatic segmentation and spatial alignment of the embryo using deep learning with minimal supervision. Our framework learns to register the embryo to an atlas, which consists of the US images acquired at a range of gestational age (GA), segmented and spatially aligned to a predefined standard orientation. From this, we can derive the segmentation of the embryo and put the embryo in standard orientation. US images acquired at 8+0 till 12+6 weeks GA were used and eight subjects were selected as atlas. We evaluated different fusion strategies to incorporate multiple atlases: 1) training the framework using atlas images from a single subject, 2) training the framework with data of all available atlases and 3) ensembling of the frameworks trained per subject. To evaluate the performance, we calculated the Dice score over the test set. We found that training the framework using all available atlases outperformed ensembling and gave similar results compared to the best of all frameworks trained on a single subject. Furthermore, we found that selecting images from the four atlases closest in GA out of all available atlases, regardless of the individual quality, gave the best results with a median Dice score of 0.72. We conclude that our framework can accurately segment and spatially align the embryo in first trimester 3D US images and is robust for the variation in quality that existed in the available atlases.

This article studies the derivatives in models that flexibly characterize the relationship between a response variable and multiple predictors, with goals of providing both accurate estimation and inference procedures for hypothesis testing. In the setting of tensor product reproducing spaces for nonparametric multivariate functions, we propose a plug-in kernel ridge regression estimator to estimate the derivatives of the underlying multivariate regression function under the smoothing spline ANOVA model. This estimator has an analytical form, making it simple to implement in practice. We first establish $L_\infty$ and $L_2$ convergence rates of the proposed estimator under general random designs. For derivatives with some selected interesting orders, we provide an in-depth analysis establishing the minimax lower bound, which matches the $L_2$ convergence rate. Additionally, motivated by a wide range of applications, we propose a hypothesis testing procedure to examine whether a derivative is zero. Theoretical results demonstrate that the proposed testing procedure achieves the correct size under the null hypothesis and is asymptotically powerful under local alternatives. For ease of use, we also develop an associated bootstrap algorithm to construct the rejection region and calculate the p-value, and the consistency of the proposed algorithm is established. Simulation studies using synthetic data and an application to a real-world dataset confirm the effectiveness of our methods.

This paper presents a novel neural implicit radiance representation for free viewpoint relighting from a small set of unstructured photographs of an object lit by a moving point light source different from the view position. We express the shape as a signed distance function modeled by a multi layer perceptron. In contrast to prior relightable implicit neural representations, we do not disentangle the different reflectance components, but model both the local and global reflectance at each point by a second multi layer perceptron that, in addition, to density features, the current position, the normal (from the signed distace function), view direction, and light position, also takes shadow and highlight hints to aid the network in modeling the corresponding high frequency light transport effects. These hints are provided as a suggestion, and we leave it up to the network to decide how to incorporate these in the final relit result. We demonstrate and validate our neural implicit representation on synthetic and real scenes exhibiting a wide variety of shapes, material properties, and global illumination light transport.

This paper proposes a nonlinear stochastic complementary filter design for inertial navigation that takes advantage of a fusion of Ultra-wideband (UWB) and Inertial Measurement Unit (IMU) technology ensuring semi-global uniform ultimate boundedness (SGUUB) of the closed loop error signals in mean square. The proposed filter estimates the vehicle's orientation, position, linear velocity, and noise covariance. The filter is designed to mimic the nonlinear navigation motion kinematics and is posed on a matrix Lie Group, the extended form of the Special Euclidean Group $\mathbb{SE}_{2}\left(3\right)$. The Lie Group based structure of the proposed filter provides unique and global representation avoiding singularity (a common shortcoming of Euler angles) as well as non-uniqueness (a common limitation of unit-quaternion). Unlike Kalman-type filters, the proposed filter successfully addresses IMU measurement noise considering unknown upper-bounded covariance. Although the navigation estimator is proposed in a continuous form, the discrete version is also presented. Moreover, the unit-quaternion implementation has been provided in the Appendix. Experimental validation performed using a publicly available real-world six-degrees-of-freedom (6 DoF) flight dataset obtained from an unmanned Micro Aerial Vehicle (MAV) illustrating the robustness of the proposed navigation technique. Keywords: Sensor-fusion, Inertial navigation, Ultra-wideband ranging, Inertial measurement unit, Stochastic differential equation, Stability, Localization, Observer design.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司