A long-standing goal of reinforcement learning is to acquire agents that can learn on training tasks and generalize well on unseen tasks that may share a similar dynamic but with different reward functions. A general challenge is to quantitatively measure the similarities between these different tasks, which is vital for analyzing the task distribution and further designing algorithms with stronger generalization. To address this, we present a novel metric named Task Distribution Relevance (TDR) via optimal Q functions of different tasks to capture the relevance of the task distribution quantitatively. In the case of tasks with a high TDR, i.e., the tasks differ significantly, we show that the Markovian policies cannot differentiate them, leading to poor performance. Based on this insight, we encode all historical information into policies for distinguishing different tasks and propose Task Aware Dreamer (TAD), which extends world models into our reward-informed world models to capture invariant latent features over different tasks. In TAD, we calculate the corresponding variational lower bound of the data log-likelihood, including a novel term to distinguish different tasks via states, to optimize reward-informed world models. Extensive experiments in both image-based control tasks and state-based control tasks demonstrate that TAD can significantly improve the performance of handling different tasks simultaneously, especially for those with high TDR, and demonstrate a strong generalization ability to unseen tasks.
We consider the problem of active learning in the context of spatial sampling for level set estimation (LSE), where the goal is to localize all regions where a function of interest lies above/below a given threshold as quickly as possible. We present a finite-horizon search procedure to perform LSE in one dimension while optimally balancing both the final estimation error and the distance traveled for a fixed number of samples. A tuning parameter is used to trade off between the estimation accuracy and distance traveled. We show that the resulting optimization problem can be solved in closed form and that the resulting policy generalizes existing approaches to this problem. We then show how this approach can be used to perform level set estimation in higher dimensions under the popular Gaussian process model. Empirical results on synthetic data indicate that as the cost of travel increases, our method's ability to treat distance nonmyopically allows it to significantly improve on the state of the art. On real air quality data, our approach achieves roughly one fifth the estimation error at less than half the cost of competing algorithms.
Learning from label proportions (LLP) is a generalization of supervised learning in which the training data is available as sets or bags of feature-vectors (instances) along with the average instance-label of each bag. The goal is to train a good instance classifier. While most previous works on LLP have focused on training models on such training data, computational learnability of LLP was only recently explored by [Saket'21, Saket'22] who showed worst case intractability of properly learning linear threshold functions (LTFs) from label proportions. However, their work did not rule out efficient algorithms for this problem on natural distributions. In this work we show that it is indeed possible to efficiently learn LTFs using LTFs when given access to random bags of some label proportion in which feature-vectors are, conditioned on their labels, independently sampled from a Gaussian distribution $N(\mathbf{\mu}, \mathbf{\Sigma})$. Our work shows that a certain matrix -- formed using covariances of the differences of feature-vectors sampled from the bags with and without replacement -- necessarily has its principal component, after a transformation, in the direction of the normal vector of the LTF. Our algorithm estimates the means and covariance matrices using subgaussian concentration bounds which we show can be applied to efficiently sample bags for approximating the normal direction. Using this in conjunction with novel generalization error bounds in the bag setting, we show that a low error hypothesis LTF can be identified. For some special cases of the $N(\mathbf{0}, \mathbf{I})$ distribution we provide a simpler mean estimation based algorithm. We include an experimental evaluation of our learning algorithms along with a comparison with those of [Saket'21, Saket'22] and random LTFs, demonstrating the effectiveness of our techniques.
Deep reinforcement learning in partially observable environments is a difficult task in itself, and can be further complicated by a sparse reward signal. Most tasks involving navigation in three-dimensional environments provide the agent with extremely limited information. Typically, the agent receives a visual observation input from the environment and is rewarded once at the end of the episode. A good reward function could substantially improve the convergence of reinforcement learning algorithms for such tasks. The classic approach to increase the density of the reward signal is to augment it with supplementary rewards. This technique is called the reward shaping. In this study, we propose two modifications of one of the recent reward shaping methods based on graph convolutional networks: the first involving advanced aggregation functions, and the second utilizing the attention mechanism. We empirically validate the effectiveness of our solutions for the task of navigation in a 3D environment with sparse rewards. For the solution featuring attention mechanism, we are also able to show that the learned attention is concentrated on edges corresponding to important transitions in 3D environment.
Visual representation learning hold great promise for robotics, but is severely hampered by the scarcity and homogeneity of robotics datasets. Recent works address this problem by pre-training visual representations on large-scale but out-of-domain data (e.g., videos of egocentric interactions) and then transferring them to target robotics tasks. While the field is heavily focused on developing better pre-training algorithms, we find that dataset choice is just as important to this paradigm's success. After all, the representation can only learn the structures or priors present in the pre-training dataset. To this end, we flip the focus on algorithms, and instead conduct a dataset centric analysis of robotic pre-training. Our findings call into question some common wisdom in the field. We observe that traditional vision datasets (like ImageNet, Kinetics and 100 Days of Hands) are surprisingly competitive options for visuo-motor representation learning, and that the pre-training dataset's image distribution matters more than its size. Finally, we show that common simulation benchmarks are not a reliable proxy for real world performance and that simple regularization strategies can dramatically improve real world policy learning. //data4robotics.github.io
Deep learning-based fault diagnosis (FD) approaches require a large amount of training data, which are difficult to obtain since they are located across different entities. Federated learning (FL) enables multiple clients to collaboratively train a shared model with data privacy guaranteed. However, the domain discrepancy and data scarcity problems among clients deteriorate the performance of the global FL model. To tackle these issues, we propose a novel framework called representation encoding-based federated meta-learning (REFML) for few-shot FD. First, a novel training strategy based on representation encoding and meta-learning is developed. It harnesses the inherent heterogeneity among training clients, effectively transforming it into an advantage for out-of-distribution generalization on unseen working conditions or equipment types. Additionally, an adaptive interpolation method that calculates the optimal combination of local and global models as the initialization of local training is proposed. This helps to further utilize local information to mitigate the negative effects of domain discrepancy. As a result, high diagnostic accuracy can be achieved on unseen working conditions or equipment types with limited training data. Compared with the state-of-the-art methods, such as FedProx, the proposed REFML framework achieves an increase in accuracy by 2.17%-6.50% when tested on unseen working conditions of the same equipment type and 13.44%-18.33% when tested on totally unseen equipment types, respectively.
Most Reinforcement Learning (RL) methods are traditionally studied in an active learning setting, where agents directly interact with their environments, observe action outcomes, and learn through trial and error. However, allowing partially trained agents to interact with real physical systems poses significant challenges, including high costs, safety risks, and the need for constant supervision. Offline RL addresses these cost and safety concerns by leveraging existing datasets and reducing the need for resource-intensive real-time interactions. Nevertheless, a substantial challenge lies in the demand for these datasets to be meticulously annotated with rewards. In this paper, we introduce Optimal Transport Reward (OTR) labelling, an innovative algorithm designed to assign rewards to offline trajectories, using a small number of high-quality expert demonstrations. The core principle of OTR involves employing Optimal Transport (OT) to calculate an optimal alignment between an unlabeled trajectory from the dataset and an expert demonstration. This alignment yields a similarity measure that is effectively interpreted as a reward signal. An offline RL algorithm can then utilize these reward signals to learn a policy. This approach circumvents the need for handcrafted rewards, unlocking the potential to harness vast datasets for policy learning. Leveraging the SurRoL simulation platform tailored for surgical robot learning, we generate datasets and employ them to train policies using the OTR algorithm. By demonstrating the efficacy of OTR in a different domain, we emphasize its versatility and its potential to expedite RL deployment across a wide range of fields.
We settle the sample complexity of policy learning for the maximization of the long run average reward associated with a uniformly ergodic Markov decision process (MDP), assuming a generative model. In this context, the existing literature provides a sample complexity upper bound of $\widetilde O(|S||A|t_{\text{mix}}^2 \epsilon^{-2})$ and a lower bound of $\Omega(|S||A|t_{\text{mix}} \epsilon^{-2})$. In these expressions, $|S|$ and $|A|$ denote the cardinalities of the state and action spaces respectively, $t_{\text{mix}}$ serves as a uniform upper limit for the total variation mixing times, and $\epsilon$ signifies the error tolerance. Therefore, a notable gap of $t_{\text{mix}}$ still remains to be bridged. Our primary contribution is to establish an estimator for the optimal policy of average reward MDPs with a sample complexity of $\widetilde O(|S||A|t_{\text{mix}}\epsilon^{-2})$, effectively reaching the lower bound in the literature. This is achieved by combining algorithmic ideas in Jin and Sidford (2021) with those of Li et al. (2020).
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).
Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.