亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Relaxation methods such as Jacobi or Gauss-Seidel are often applied as smoothers in algebraic multigrid. Incomplete factorizations can also be employed, however, direct triangular solves are comparatively slow on GPUs. Previous work by Antz et al. \cite{Anzt2015} proposed an iterative approach for solving such sparse triangular systems. However, when using the stationary Jacobi iteration, if the upper or lower triangular factor is highly non-normal, the iterations will diverge. An ILUT smoother is introduced for classical Ruge-St\"uben C-AMG that applies Ruiz scaling to mitigate the non-normality of the upper triangular factor. Our approach facilitates the use of Jacobi iteration in place of the inherently sequential triangular solve. Because the scaling is applied to the upper triangular factor as opposed to the global matrix, it can be done locally on an MPI-rank for a diagonal block of the global matrix. A performance model is provided along with numerical results for matrices extracted from the PeleLM \cite{PeleLM} pressure continuity solver.

相關內容

Computing in-memory (CiM) has emerged as an attractive technique to mitigate the von-Neumann bottleneck. Current digital CiM approaches for in-memory operands are based on multi-wordline assertion for computing bit-wise Boolean functions and arithmetic functions such as addition. However, most of these techniques, due to the many-to-one mapping of input vectors to bitline voltages, are limited to CiM of commutative functions, leaving out an important class of computations such as subtraction. In this paper, we propose a CiM approach, which solves the mapping problem through an asymmetric wordline biasing scheme, enabling (a) simultaneous single-cycle memory read and CiM of primitive Boolean functions (b) computation of any Boolean function and (c) CiM of non-commutative functions such as subtraction and comparison. While the proposed technique is technology-agnostic, we show its utility for ferroelectric transistor (FeFET)-based non-volatile memory. Compared to the standard near-memory methods (which require two full memory accesses per operation), we show that our method can achieve a full scale two-operand digital CiM using just one memory access, leading to a 23.2% - 72.6% decrease in energy-delay product (EDP).

In health-pollution cohort studies, accurate predictions of pollutant concentrations at new locations are needed, since the locations of fixed monitoring sites and study participants are often spatially misaligned. For multi-pollution data, principal component analysis (PCA) is often incorporated to obtain low-rank (LR) structure of the data prior to spatial prediction. Recently developed predictive PCA modifies the traditional algorithm to improve the overall predictive performance by leveraging both LR and spatial structures within the data. However, predictive PCA requires complete data or an initial imputation step. Nonparametric imputation techniques without accounting for spatial information may distort the underlying structure of the data, and thus further reduce the predictive performance. We propose a convex optimization problem inspired by the LR matrix completion framework and develop a proximal algorithm to solve it. Missing data are imputed and handled concurrently within the algorithm, which eliminates the necessity of a separate imputation step. We show that our algorithm has low computational burden and leads to reliable predictive performance as the severity of missing data increases.

This paper studies the inference of the regression coefficient matrix under multivariate response linear regressions in the presence of hidden variables. A novel procedure for constructing confidence intervals of entries of the coefficient matrix is proposed. Our method first utilizes the multivariate nature of the responses by estimating and adjusting the hidden effect to construct an initial estimator of the coefficient matrix. By further deploying a low-dimensional projection procedure to reduce the bias introduced by the regularization in the previous step, a refined estimator is proposed and shown to be asymptotically normal. The asymptotic variance of the resulting estimator is derived with closed-form expression and can be consistently estimated. In addition, we propose a testing procedure for the existence of hidden effects and provide its theoretical justification. Both our procedures and their analyses are valid even when the feature dimension and the number of responses exceed the sample size. Our results are further backed up via extensive simulations and a real data analysis.

In this paper, we consider a distributed lossy compression network with $L$ encoders and a decoder. Each encoder observes a source and compresses it, which is sent to the decoder. Moreover, each observed source can be written as the sum of a target signal and a noise which are independently generated from two symmetric multivariate Gaussian distributions. The decoder jointly constructs the target signals given a threshold on the mean squared error distortion. We are interested in the minimum compression rate of this network versus the distortion threshold which is known as the \emph{rate-distortion function}. We derive a lower bound on the rate-distortion function by solving a convex program, explicitly. The proposed lower bound matches the well-known Berger-Tung's upper bound for some values of the distortion threshold. The asymptotic expressions of the upper and lower bounds are derived in the large $L$ limit. Under specific constraints, the bounds match in the asymptotic regime yielding the characterization of the rate-distortion function.

In this note, we introduce a general version of the well-known elliptical potential lemma that is a widely used technique in the analysis of algorithms in sequential learning and decision-making problems. We consider a stochastic linear bandit setting where a decision-maker sequentially chooses among a set of given actions, observes their noisy rewards, and aims to maximize her cumulative expected reward over a decision-making horizon. The elliptical potential lemma is a key tool for quantifying uncertainty in estimating parameters of the reward function, but it requires the noise and the prior distributions to be Gaussian. Our general elliptical potential lemma relaxes this Gaussian requirement which is a highly non-trivial extension for a number of reasons; unlike the Gaussian case, there is no closed-form solution for the covariance matrix of the posterior distribution, the covariance matrix is not a deterministic function of the actions, and the covariance matrix is not decreasing with respect to the semidefinite inequality. While this result is of broad interest, we showcase an application of it to prove an improved Bayesian regret bound for the well-known Thompson sampling algorithm in stochastic linear bandits with changing action sets where prior and noise distributions are general. This bound is minimax optimal up to constants.

Graph-SLAM is a well-established algorithm for constructing a topological map of the environment while simultaneously attempting the localisation of the robot. It relies on scan matching algorithms to align noisy observations along robot's movements to compute an estimate of the current robot's location. We propose a fundamentally different approach to scan matching tasks to improve the estimation of roto-translation displacements and therefore the performance of the full SLAM algorithm. A Monte-Carlo approach is used to generate weighted hypotheses of the geometrical displacement between two scans, and then we cluster these hypotheses to compute the displacement that results in the best alignment. To cope with clusterization on roto-translations, we propose a novel clustering approach that robustly extends Gaussian Mean-Shift to orientations by factorizing the kernel density over the roto-translation components. We demonstrate the effectiveness of our method in an extensive set of experiments using both synthetic data and the Intel Research Lab's benchmarking datasets. The results confirms that our approach has superior performance in terms of matching accuracy and runtime computation than the state-of-the-art iterative point-based scan matching algorithms.

Geometric scattering has recently gained recognition in graph representation learning, and recent work has shown that integrating scattering features in graph convolution networks (GCNs) can alleviate the typical oversmoothing of features in node representation learning. However, scattering often relies on handcrafted design, requiring careful selection of frequency bands via a cascade of wavelet transforms, as well as an effective weight sharing scheme to combine low- and band-pass information. Here, we introduce a new attention-based architecture to produce adaptive task-driven node representations by implicitly learning node-wise weights for combining multiple scattering and GCN channels in the network. We show the resulting geometric scattering attention network (GSAN) outperforms previous networks in semi-supervised node classification, while also enabling a spectral study of extracted information by examining node-wise attention weights.

Several recent applications of optimal transport (OT) theory to machine learning have relied on regularization, notably entropy and the Sinkhorn algorithm. Because matrix-vector products are pervasive in the Sinkhorn algorithm, several works have proposed to \textit{approximate} kernel matrices appearing in its iterations using low-rank factors. Another route lies instead in imposing low-rank constraints on the feasible set of couplings considered in OT problems, with no approximations on cost nor kernel matrices. This route was first explored by Forrow et al., 2018, who proposed an algorithm tailored for the squared Euclidean ground cost, using a proxy objective that can be solved through the machinery of regularized 2-Wasserstein barycenters. Building on this, we introduce in this work a generic approach that aims at solving, in full generality, the OT problem under low-rank constraints with arbitrary costs. Our algorithm relies on an explicit factorization of low rank couplings as a product of \textit{sub-coupling} factors linked by a common marginal; similar to an NMF approach, we alternatively updates these factors. We prove the non-asymptotic stationary convergence of this algorithm and illustrate its efficiency on benchmark experiments.

Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司