亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Transfer learning which aims at utilizing knowledge learned from one problem (source domain) to solve another different but related problem (target domain) has attracted wide research attentions. However, the current transfer learning methods are mostly uninterpretable, especially to people without ML expertise. In this extended abstract, we brief introduce two knowledge graph (KG) based frameworks towards human understandable transfer learning explanation. The first one explains the transferability of features learned by Convolutional Neural Network (CNN) from one domain to another through pre-training and fine-tuning, while the second justifies the model of a target domain predicted by models from multiple source domains in zero-shot learning (ZSL). Both methods utilize KG and its reasoning capability to provide rich and human understandable explanations to the transfer procedure.

相關內容

遷移學習(Transfer Learning)是一種機器學習方法,是把一個領域(即源領域)的知識,遷移到另外一個領域(即目標領域),使得目標領域能夠取得更好的學習效果。遷移學習(TL)是機器學習(ML)中的一個研究問題,著重于存儲在解決一個問題時獲得的知識并將其應用于另一個但相關的問題。例如,在學習識別汽車時獲得的知識可以在嘗試識別卡車時應用。盡管這兩個領域之間的正式聯系是有限的,但這一領域的研究與心理學文獻關于學習轉移的悠久歷史有關。從實踐的角度來看,為學習新任務而重用或轉移先前學習的任務中的信息可能會顯著提高強化學習代理的樣本效率。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Exploring the intrinsic interconnections between the knowledge encoded in PRe-trained Deep Neural Networks (PR-DNNs) of heterogeneous tasks sheds light on their mutual transferability, and consequently enables knowledge transfer from one task to another so as to reduce the training effort of the latter. In this paper, we propose the DEeP Attribution gRAph (DEPARA) to investigate the transferability of knowledge learned from PR-DNNs. In DEPARA, nodes correspond to the inputs and are represented by their vectorized attribution maps with regards to the outputs of the PR-DNN. Edges denote the relatedness between inputs and are measured by the similarity of their features extracted from the PR-DNN. The knowledge transferability of two PR-DNNs is measured by the similarity of their corresponding DEPARAs. We apply DEPARA to two important yet under-studied problems in transfer learning: pre-trained model selection and layer selection. Extensive experiments are conducted to demonstrate the effectiveness and superiority of the proposed method in solving both these problems. Code, data and models reproducing the results in this paper are available at \url{//github.com/zju-vipa/DEPARA}.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Reasoning is essential for the development of large knowledge graphs, especially for completion, which aims to infer new triples based on existing ones. Both rules and embeddings can be used for knowledge graph reasoning and they have their own advantages and difficulties. Rule-based reasoning is accurate and explainable but rule learning with searching over the graph always suffers from efficiency due to huge search space. Embedding-based reasoning is more scalable and efficient as the reasoning is conducted via computation between embeddings, but it has difficulty learning good representations for sparse entities because a good embedding relies heavily on data richness. Based on this observation, in this paper we explore how embedding and rule learning can be combined together and complement each other's difficulties with their advantages. We propose a novel framework IterE iteratively learning embeddings and rules, in which rules are learned from embeddings with proper pruning strategy and embeddings are learned from existing triples and new triples inferred by rules. Evaluations on embedding qualities of IterE show that rules help improve the quality of sparse entity embeddings and their link prediction results. We also evaluate the efficiency of rule learning and quality of rules from IterE compared with AMIE+, showing that IterE is capable of generating high quality rules more efficiently. Experiments show that iteratively learning embeddings and rules benefit each other during learning and prediction.

Explainability and effectiveness are two key aspects for building recommender systems. Prior efforts mostly focus on incorporating side information to achieve better recommendation performance. However, these methods have some weaknesses: (1) prediction of neural network-based embedding methods are hard to explain and debug; (2) symbolic, graph-based approaches (e.g., meta path-based models) require manual efforts and domain knowledge to define patterns and rules, and ignore the item association types (e.g. substitutable and complementary). In this paper, we propose a novel joint learning framework to integrate \textit{induction of explainable rules from knowledge graph} with \textit{construction of a rule-guided neural recommendation model}. The framework encourages two modules to complement each other in generating effective and explainable recommendation: 1) inductive rules, mined from item-centric knowledge graphs, summarize common multi-hop relational patterns for inferring different item associations and provide human-readable explanation for model prediction; 2) recommendation module can be augmented by induced rules and thus have better generalization ability dealing with the cold-start issue. Extensive experiments\footnote{Code and data can be found at: \url{//github.com/THUIR/RuleRec}} show that our proposed method has achieved significant improvements in item recommendation over baselines on real-world datasets. Our model demonstrates robust performance over "noisy" item knowledge graphs, generated by linking item names to related entities.

Knowledge graph (KG) completion aims to fill the missing facts in a KG, where a fact is represented as a triple in the form of $(subject, relation, object)$. Current KG completion models compel two-thirds of a triple provided (e.g., $subject$ and $relation$) to predict the remaining one. In this paper, we propose a new model, which uses a KG-specific multi-layer recurrent neutral network (RNN) to model triples in a KG as sequences. It outperformed several state-of-the-art KG completion models on the conventional entity prediction task for many evaluation metrics, based on two benchmark datasets and a more difficult dataset. Furthermore, our model is enabled by the sequential characteristic and thus capable of predicting the whole triples only given one entity. Our experiments demonstrated that our model achieved promising performance on this new triple prediction task.

In this paper, we propose a novel deep learning architecture for multi-label zero-shot learning (ML-ZSL), which is able to predict multiple unseen class labels for each input instance. Inspired by the way humans utilize semantic knowledge between objects of interests, we propose a framework that incorporates knowledge graphs for describing the relationships between multiple labels. Our model learns an information propagation mechanism from the semantic label space, which can be applied to model the interdependencies between seen and unseen class labels. With such investigation of structured knowledge graphs for visual reasoning, we show that our model can be applied for solving multi-label classification and ML-ZSL tasks. Compared to state-of-the-art approaches, comparable or improved performances can be achieved by our method.

Existing visual tracking methods usually localize a target object with a bounding box, in which the performance of the foreground object trackers or detectors is often affected by the inclusion of background clutter. To handle this problem, we learn a patch-based graph representation for visual tracking. The tracked object is modeled by with a graph by taking a set of non-overlapping image patches as nodes, in which the weight of each node indicates how likely it belongs to the foreground and edges are weighted for indicating the appearance compatibility of two neighboring nodes. This graph is dynamically learned and applied in object tracking and model updating. During the tracking process, the proposed algorithm performs three main steps in each frame. First, the graph is initialized by assigning binary weights of some image patches to indicate the object and background patches according to the predicted bounding box. Second, the graph is optimized to refine the patch weights by using a novel alternating direction method of multipliers. Third, the object feature representation is updated by imposing the weights of patches on the extracted image features. The object location is predicted by maximizing the classification score in the structured support vector machine. Extensive experiments show that the proposed tracking algorithm performs well against the state-of-the-art methods on large-scale benchmark datasets.

We introduce KBGAN, an adversarial learning framework to improve the performances of a wide range of existing knowledge graph embedding models. Because knowledge graphs typically only contain positive facts, sampling useful negative training examples is a non-trivial task. Replacing the head or tail entity of a fact with a uniformly randomly selected entity is a conventional method for generating negative facts, but the majority of the generated negative facts can be easily discriminated from positive facts, and will contribute little towards the training. Inspired by generative adversarial networks (GANs), we use one knowledge graph embedding model as a negative sample generator to assist the training of our desired model, which acts as the discriminator in GANs. This framework is independent of the concrete form of generator and discriminator, and therefore can utilize a wide variety of knowledge graph embedding models as its building blocks. In experiments, we adversarially train two translation-based models, TransE and TransD, each with assistance from one of the two probability-based models, DistMult and ComplEx. We evaluate the performances of KBGAN on the link prediction task, using three knowledge base completion datasets: FB15k-237, WN18 and WN18RR. Experimental results show that adversarial training substantially improves the performances of target embedding models under various settings.

Link prediction for knowledge graphs is the task of predicting missing relationships between entities. Previous work on link prediction has focused on shallow, fast models which can scale to large knowledge graphs. However, these models learn less expressive features than deep, multi-layer models -- which potentially limits performance. In this work, we introduce ConvE, a multi-layer convolutional network model for link prediction, and report state-of-the-art results for several established datasets. We also show that the model is highly parameter efficient, yielding the same performance as DistMult and R-GCN with 8x and 17x fewer parameters. Analysis of our model suggests that it is particularly effective at modelling nodes with high indegree -- which are common in highly-connected, complex knowledge graphs such as Freebase and YAGO3. In addition, it has been noted that the WN18 and FB15k datasets suffer from test set leakage, due to inverse relations from the training set being present in the test set -- however, the extent of this issue has so far not been quantified. We find this problem to be severe: a simple rule-based model can achieve state-of-the-art results on both WN18 and FB15k. To ensure that models are evaluated on datasets where simply exploiting inverse relations cannot yield competitive results, we investigate and validate several commonly used datasets -- deriving robust variants where necessary. We then perform experiments on these robust datasets for our own and several previously proposed models, and find that ConvE achieves state-of-the-art Mean Reciprocal Rank across all datasets.

北京阿比特科技有限公司