亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper tackles text-guided control of StyleGAN for editing garments in full-body human images. Existing StyleGAN-based methods suffer from handling the rich diversity of garments and body shapes and poses. We propose a framework for text-guided full-body human image synthesis via an attention-based latent code mapper, which enables more disentangled control of StyleGAN than existing mappers. Our latent code mapper adopts an attention mechanism that adaptively manipulates individual latent codes on different StyleGAN layers under text guidance. In addition, we introduce feature-space masking at inference time to avoid unwanted changes caused by text inputs. Our quantitative and qualitative evaluations reveal that our method can control generated images more faithfully to given texts than existing methods.

相關內容

Large-scale Text-to-Image (T2I) diffusion models demonstrate significant generation capabilities based on textual prompts. Based on the T2I diffusion models, text-guided image editing research aims to empower users to manipulate generated images by altering the text prompts. However, existing image editing techniques are prone to editing over unintentional regions that are beyond the intended target area, primarily due to inaccuracies in cross-attention maps. To address this problem, we propose Localization-aware Inversion (LocInv), which exploits segmentation maps or bounding boxes as extra localization priors to refine the cross-attention maps in the denoising phases of the diffusion process. Through the dynamic updating of tokens corresponding to noun words in the textual input, we are compelling the cross-attention maps to closely align with the correct noun and adjective words in the text prompt. Based on this technique, we achieve fine-grained image editing over particular objects while preventing undesired changes to other regions. Our method LocInv, based on the publicly available Stable Diffusion, is extensively evaluated on a subset of the COCO dataset, and consistently obtains superior results both quantitatively and qualitatively.The code will be released at //github.com/wangkai930418/DPL

For recent diffusion-based generative models, maintaining consistent content across a series of generated images, especially those containing subjects and complex details, presents a significant challenge. In this paper, we propose a new way of self-attention calculation, termed Consistent Self-Attention, that significantly boosts the consistency between the generated images and augments prevalent pretrained diffusion-based text-to-image models in a zero-shot manner. To extend our method to long-range video generation, we further introduce a novel semantic space temporal motion prediction module, named Semantic Motion Predictor. It is trained to estimate the motion conditions between two provided images in the semantic spaces. This module converts the generated sequence of images into videos with smooth transitions and consistent subjects that are significantly more stable than the modules based on latent spaces only, especially in the context of long video generation. By merging these two novel components, our framework, referred to as StoryDiffusion, can describe a text-based story with consistent images or videos encompassing a rich variety of contents. The proposed StoryDiffusion encompasses pioneering explorations in visual story generation with the presentation of images and videos, which we hope could inspire more research from the aspect of architectural modifications. Our code is made publicly available at //github.com/HVision-NKU/StoryDiffusion.

This paper introduces GTX a standalone main-memory write-optimized graph system that specializes in structural and graph property updates while maintaining concurrent reads and graph analytics with snapshot isolation-level transactional concurrency. Recent graph libraries target efficient concurrent read and write support while guaranteeing transactional consistency. However, their performance suffers for updates with strong temporal locality over the same vertexes and edges due to vertex-centric lock contentions. GTX introduces a new delta-chain-centric concurrency-control protocol that eliminates traditional mutually exclusive latches. GTX resolves the conflicts caused by vertex-level locking, and adapts to real-life workloads while maintaining sequential access to the graph's adjacency lists storage. This combination of features has been demonstrated to provide good performance in graph analytical queries. GTX's transactions support fast group commit, novel write-write conflict prevention, and lazy garbage collection. Based on extensive experimental and comparative studies, in addition to maintaining competitive concurrent read and analytical performance, GTX demonstrates high throughput over state-of-the-art techniques when handling concurrent transaction+analytics workloads. For write-heavy transactional workloads, GTX performs up to 11x better than the best-performing state-of-the-art systems in transaction throughput. At the same time, GTX does not sacrifice the performance of read-heavy analytical workloads, and has competitive performance similar to state-of-the-art systems.

Diffusion-based text-to-image (T2I) models generate high-fidelity images for given textual prompts. They are trained on large datasets scraped from the Internet, potentially containing unacceptable concepts (e.g., copyright infringing or unsafe). Retraining T2I models after filtering out unacceptable concepts in the training data is inefficient and degrades utility. Hence, there is a need for concept removal techniques (CRTs) which are effective in removing unacceptable concepts, utility-preserving on acceptable concepts, and robust against evasion with adversarial prompts. None of the prior filtering and fine-tuning CRTs satisfy all these requirements simultaneously. We introduce Espresso, the first robust concept filter based on Contrastive Language-Image Pre-Training (CLIP). It identifies unacceptable concepts by projecting the generated image's embedding onto the vector connecting unacceptable and acceptable concepts in the joint text-image embedding space. This ensures robustness by restricting the adversary to adding noise only along this vector, in the direction of the acceptable concept. Further fine-tuning Espresso to separate embeddings of acceptable and unacceptable concepts, while preserving their pairing with image embeddings, ensures both effectiveness and utility. We evaluate Espresso on eleven concepts to show that it is effective (~5% CLIP accuracy on unacceptable concepts), utility-preserving (~93% normalized CLIP score on acceptable concepts), and robust (~4% CLIP accuracy on adversarial prompts for unacceptable concepts). Finally, we present theoretical bounds for the certified robustness of Espresso against adversarial prompts, and an empirical analysis.

Physics-based inverse rendering enables joint optimization of shape, material, and lighting based on captured 2D images. To ensure accurate reconstruction, using a light model that closely resembles the captured environment is essential. Although the widely adopted distant environmental lighting model is adequate in many cases, we demonstrate that its inability to capture spatially varying illumination can lead to inaccurate reconstructions in many real-world inverse rendering scenarios. To address this limitation, we incorporate NeRF as a non-distant environment emitter into the inverse rendering pipeline. Additionally, we introduce an emitter importance sampling technique for NeRF to reduce the rendering variance. Through comparisons on both real and synthetic datasets, our results demonstrate that our NeRF-based emitter offers a more precise representation of scene lighting, thereby improving the accuracy of inverse rendering.

Unpaired exemplar-based image-to-image (UEI2I) translation aims to translate a source image to a target image domain with the style of a target image exemplar, without ground-truth input-translation pairs. Existing UEI2I methods represent style using one vector per image or rely on semantic supervision to define one style vector per object. Here, in contrast, we propose to represent style as a dense feature map, allowing for a finer-grained transfer to the source image without requiring any external semantic information. We then rely on perceptual and adversarial losses to disentangle our dense style and content representations. To stylize the source content with the exemplar style, we extract unsupervised cross-domain semantic correspondences and warp the exemplar style to the source content. We demonstrate the effectiveness of our method on four datasets using standard metrics together with a localized style metric we propose, which measures style similarity in a class-wise manner. Our results show that the translations produced by our approach are more diverse, preserve the source content better, and are closer to the exemplars when compared to the state-of-the-art methods. Project page: //github.com/IVRL/dsi2i

Traditional accessibility methods like alternative text and data tables typically underrepresent data visualization's full potential. Keyboard-based chart navigation has emerged as a potential solution, yet efficient data exploration remains challenging. We present VizAbility, a novel system that enriches chart content navigation with conversational interaction, enabling users to use natural language for querying visual data trends. VizAbility adapts to the user's navigation context for improved response accuracy and facilitates verbal command-based chart navigation. Furthermore, it can address queries for contextual information, designed to address the needs of visually impaired users. We designed a large language model (LLM)-based pipeline to address these user queries, leveraging chart data & encoding, user context, and external web knowledge. We conducted both qualitative and quantitative studies to evaluate VizAbility's multimodal approach. We discuss further opportunities based on the results, including improved benchmark testing, incorporation of vision models, and integration with visualization workflows.

Contemporary 3D research, particularly in reconstruction and generation, heavily relies on 2D images for inputs or supervision. However, current designs for these 2D-3D mapping are memory-intensive, posing a significant bottleneck for existing methods and hindering new applications. In response, we propose a pair of highly scalable components for 3D neural fields: Lightplane Render and Splatter, which significantly reduce memory usage in 2D-3D mapping. These innovations enable the processing of vastly more and higher resolution images with small memory and computational costs. We demonstrate their utility in various applications, from benefiting single-scene optimization with image-level losses to realizing a versatile pipeline for dramatically scaling 3D reconstruction and generation. Code: \url{//github.com/facebookresearch/lightplane}.

In the field of personalized image generation, the ability to create images preserving concepts has significantly improved. Creating an image that naturally integrates multiple concepts in a cohesive and visually appealing composition can indeed be challenging. This paper introduces "InstantFamily," an approach that employs a novel masked cross-attention mechanism and a multimodal embedding stack to achieve zero-shot multi-ID image generation. Our method effectively preserves ID as it utilizes global and local features from a pre-trained face recognition model integrated with text conditions. Additionally, our masked cross-attention mechanism enables the precise control of multi-ID and composition in the generated images. We demonstrate the effectiveness of InstantFamily through experiments showing its dominance in generating images with multi-ID, while resolving well-known multi-ID generation problems. Additionally, our model achieves state-of-the-art performance in both single-ID and multi-ID preservation. Furthermore, our model exhibits remarkable scalability with a greater number of ID preservation than it was originally trained with.

Low-light image enhancement (LLIE) aims to improve low-illumination images. However, existing methods face two challenges: (1) uncertainty in restoration from diverse brightness degradations; (2) loss of texture and color information caused by noise suppression and light enhancement. In this paper, we propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement to address these challenges. In particular, we reframe LLIE as learning an image-to-code mapping from low-light images to discrete codebook, which has been learned from high-quality images. To enhance this process, a Semantic Embedding Module (SEM) is introduced to integrate semantic information with low-level features, and a Codebook Shift (CS) mechanism, designed to adapt the pre-learned codebook to better suit the distinct characteristics of our low-light dataset. Additionally, we present an Interactive Feature Transformation (IFT) module to refine texture and color information during image reconstruction, allowing for interactive enhancement based on user preferences. Extensive experiments on both real-world and synthetic benchmarks demonstrate that the incorporation of prior knowledge and controllable information transfer significantly enhances LLIE performance in terms of quality and fidelity. The proposed CodeEnhance exhibits superior robustness to various degradations, including uneven illumination, noise, and color distortion.

北京阿比特科技有限公司