亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Existing decentralized algorithms usually require knowledge of problem parameters for updating local iterates. For example, the hyperparameters (such as learning rate) usually require the knowledge of Lipschitz constant of the global gradient or topological information of the communication networks, which are usually not accessible in practice. In this paper, we propose D-NASA, the first algorithm for decentralized nonconvex stochastic optimization that requires no prior knowledge of any problem parameters. We show that D-NASA has the optimal rate of convergence for nonconvex objectives under very mild conditions and enjoys the linear-speedup effect, i.e. the computation becomes faster as the number of nodes in the system increases. Extensive numerical experiments are conducted to support our findings.

相關內容

Extremely large-scale multiple-input multiple-output (XL-MIMO) systems are capable of improving spectral efficiency by employing far more antennas than conventional massive MIMO at the base station (BS). However, beam training in multiuser XL-MIMO systems is challenging. To tackle these issues, we conceive a three-phase graph neural network (GNN)-based beam training scheme for multiuser XL-MIMO systems. In the first phase, only far-field wide beams have to be tested for each user and the GNN is utilized to map the beamforming gain information of the far-field wide beams to the optimal near-field beam for each user. In addition, the proposed GNN-based scheme can exploit the position-correlation between adjacent users for further improvement of the accuracy of beam training. In the second phase, a beam allocation scheme based on the probability vectors produced at the outputs of GNNs is proposed to address the above beam-direction conflicts between users. In the third phase, the hybrid TBF is designed for further reducing the inter-user interference. Our simulation results show that the proposed scheme improves the beam training performance of the benchmarks. Moreover, the performance of the proposed beam training scheme approaches that of an exhaustive search, despite requiring only about 7% of the pilot overhead.

Audit logs are one of the most important tools for transparently tracking system events and maintaining continuous oversight in corporate organizations and enterprise business systems. There are many cases where the audit logs contain sensitive data, or the audit logs are enormous. In these situations, dealing with a subset of the data is more practical than the entire data set. To provide a secure solution to handle these issues, a sanitizable signature scheme (SSS) is a viable cryptographic primitive. Herein, we first present the first post-quantum secure multivariate-based SSS, namely Mul-SAN. Our proposed design provides unforgeability, privacy, immutability, signer accountability, and sanitizer accountability under the assumption that the MQ problem is NP-hard. Mul-SAN is very efficient and only requires computing field multiplications and additions over a finite field for its implementation. Mul-SAN presents itself as a practical method to partially delegate control of the authenticated data in avenues like the healthcare industry and government organizations. We also explore using Blockchain to provide a tamper-proof and robust audit log mechanism.

The vector autoregression (VAR) has been widely used in system identification, econometrics, natural science, and many other areas. However, when the state dimension becomes large the parameter dimension explodes. So rank reduced modelling is attractive and is well developed. But a fundamental requirement in almost all applications is stability of the fitted model. And this has not been addressed in the rank reduced case. Here, we develop, for the first time, a closed-form formula for an estimator of a rank reduced transition matrix which is guaranteed to be stable. We show that our estimator is consistent and asymptotically statistically efficient and illustrate it in comparative simulations.

The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.

Invariant approaches have been remarkably successful in tackling the problem of domain generalization, where the objective is to perform inference on data distributions different from those used in training. In our work, we investigate whether it is possible to leverage domain information from the unseen test samples themselves. We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model, that takes both the input as well as its domain into account while making predictions. For unseen domains, our method simply uses few unlabelled test examples to construct the domain embedding. This enables adaptive classification on any unseen domain. Our approach achieves state-of-the-art performance on various domain generalization benchmarks. In addition, we introduce the first real-world, large-scale domain generalization benchmark, Geo-YFCC, containing 1.1M samples over 40 training, 7 validation, and 15 test domains, orders of magnitude larger than prior work. We show that the existing approaches either do not scale to this dataset or underperform compared to the simple baseline of training a model on the union of data from all training domains. In contrast, our approach achieves a significant improvement.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

Representation learning on a knowledge graph (KG) is to embed entities and relations of a KG into low-dimensional continuous vector spaces. Early KG embedding methods only pay attention to structured information encoded in triples, which would cause limited performance due to the structure sparseness of KGs. Some recent attempts consider paths information to expand the structure of KGs but lack explainability in the process of obtaining the path representations. In this paper, we propose a novel Rule and Path-based Joint Embedding (RPJE) scheme, which takes full advantage of the explainability and accuracy of logic rules, the generalization of KG embedding as well as the supplementary semantic structure of paths. Specifically, logic rules of different lengths (the number of relations in rule body) in the form of Horn clauses are first mined from the KG and elaborately encoded for representation learning. Then, the rules of length 2 are applied to compose paths accurately while the rules of length 1 are explicitly employed to create semantic associations among relations and constrain relation embeddings. Besides, the confidence level of each rule is also considered in optimization to guarantee the availability of applying the rule to representation learning. Extensive experimental results illustrate that RPJE outperforms other state-of-the-art baselines on KG completion task, which also demonstrate the superiority of utilizing logic rules as well as paths for improving the accuracy and explainability of representation learning.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Advanced methods of applying deep learning to structured data such as graphs have been proposed in recent years. In particular, studies have focused on generalizing convolutional neural networks to graph data, which includes redefining the convolution and the downsampling (pooling) operations for graphs. The method of generalizing the convolution operation to graphs has been proven to improve performance and is widely used. However, the method of applying downsampling to graphs is still difficult to perform and has room for improvement. In this paper, we propose a graph pooling method based on self-attention. Self-attention using graph convolution allows our pooling method to consider both node features and graph topology. To ensure a fair comparison, the same training procedures and model architectures were used for the existing pooling methods and our method. The experimental results demonstrate that our method achieves superior graph classification performance on the benchmark datasets using a reasonable number of parameters.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司