For users to trust model predictions, they need to understand model outputs, particularly their confidence - calibration aims to adjust (calibrate) models' confidence to match expected accuracy. We argue that the traditional calibration evaluation does not promote effective calibrations: for example, it can encourage always assigning a mediocre confidence score to all predictions, which does not help users distinguish correct predictions from wrong ones. Building on those observations, we propose a new calibration metric, MacroCE, that better captures whether the model assigns low confidence to wrong predictions and high confidence to correct predictions. Focusing on the practical application of open-domain question answering, we examine conventional calibration methods applied on the widely-used retriever-reader pipeline, all of which do not bring significant gains under our new MacroCE metric. Toward better calibration, we propose a new calibration method (ConsCal) that uses not just final model predictions but whether multiple model checkpoints make consistent predictions. Altogether, we provide an alternative view of calibration along with a new metric, re-evaluation of existing calibration methods on our metric, and proposal of a more effective calibration method.
Mathematical models are essential for understanding and making predictions about systems arising in nature and engineering. Yet, mathematical models are a simplification of true phenomena, thus making predictions subject to uncertainty. Hence, the ability to quantify uncertainties is essential to any modelling framework, enabling the user to assess the importance of certain parameters on quantities of interest and have control over the quality of the model output by providing a rigorous understanding of uncertainty. Peridynamic models are a particular class of mathematical models that have proven to be remarkably accurate and robust for a large class of material failure problems. However, the high computational expense of peridynamic models remains a major limitation, hindering outer-loop applications that require a large number of simulations, for example, uncertainty quantification. This contribution provides a framework to make such computations feasible. By employing a Multilevel Monte Carlo (MLMC) framework, where the majority of simulations are performed using a coarse mesh, and performing relatively few simulations using a fine mesh, a significant reduction in computational cost can be realised, and statistics of structural failure can be estimated. The results show a speed-up factor of 16x over a standard Monte Carlo estimator, enabling the forward propagation of uncertain parameters in a computationally expensive peridynamic model. Furthermore, the multilevel method provides an estimate of both the discretisation error and sampling error, thus improving the confidence in numerical predictions. The performance of the approach is demonstrated through an examination of the statistical size effect in quasi-brittle materials.
Deep neural network (DNN) classifiers are often overconfident, producing miscalibrated class probabilities. In high-risk applications like healthcare, practitioners require $\textit{fully calibrated}$ probability predictions for decision-making. That is, conditioned on the prediction $\textit{vector}$, $\textit{every}$ class' probability should be close to the predicted value. Most existing calibration methods either lack theoretical guarantees for producing calibrated outputs, reduce classification accuracy in the process, or only calibrate the predicted class. This paper proposes a new Kernel-based calibration method called KCal. Unlike existing calibration procedures, KCal does not operate directly on the logits or softmax outputs of the DNN. Instead, KCal learns a metric space on the penultimate-layer latent embedding and generates predictions using kernel density estimates on a calibration set. We first analyze KCal theoretically, showing that it enjoys a provable $\textit{full}$ calibration guarantee. Then, through extensive experiments across a variety of datasets, we show that KCal consistently outperforms baselines as measured by the calibration error and by proper scoring rules like the Brier Score.
Existing techniques for training language models can be misaligned with the truth: if we train models with imitation learning, they may reproduce errors that humans make; if we train them to generate text that humans rate highly, they may output errors that human evaluators can't detect. We propose circumventing this issue by directly finding latent knowledge inside the internal activations of a language model in a purely unsupervised way. Specifically, we introduce a method for accurately answering yes-no questions given only unlabeled model activations. It works by finding a direction in activation space that satisfies logical consistency properties, such as that a statement and its negation have opposite truth values. We show that despite using no supervision and no model outputs, our method can recover diverse knowledge represented in large language models: across 6 models and 10 question-answering datasets, it outperforms zero-shot accuracy by 4\% on average. We also find that it cuts prompt sensitivity in half and continues to maintain high accuracy even when models are prompted to generate incorrect answers. Our results provide an initial step toward discovering what language models know, distinct from what they say, even when we don't have access to explicit ground truth labels.
We present a new method of modelling numerical systems where there are two distinct output solution classes, for example tipping points or bifurcations. Gaussian process emulation is a useful tool in understanding these complex systems and provides estimates of uncertainty, but we aim to include systems where there are discontinuities between the two output solutions. Due to continuity assumptions, we consider current methods of classification to split our input space into two output regions. Classification and logistic regression methods currently rely on drawing from an independent Bernoulli distribution, which neglects any information known in the neighbouring area. We build on this by including correlation between our input points. Gaussian processes are still a vital element, but used in latent space to model the two regions. Using the input values and an associated output class label, the latent variable is estimated using MCMC sampling and a unique likelihood. A threshold (usually at zero) defines the boundary. We apply our method to a motivating example provided by the hormones associated with the reproductive system in mammals, where the two solutions are associated with high and low rates of reproduction.
Relational verification encompasses information flow security, regression verification, translation validation for compilers, and more. Effective alignment of the programs and computations to be related facilitates use of simpler relational invariants and relational procedure specs, which in turn enables automation and modular reasoning. Alignment has been explored in terms of trace pairs, deductive rules of relational Hoare logics (RHL), and several forms of product automata. This article shows how a simple extension of Kleene Algebra with Tests (KAT), called BiKAT, subsumes prior formulations, including alignment witnesses for forall-exists properties, which brings to light new RHL-style rules for such properties. Alignments can be discovered algorithmically or devised manually but, in either case, their adequacy with respect to the original programs must be proved; an explicit algebra enables constructive proof by equational reasoning. Furthermore our approach inherits algorithmic benefits from existing KAT-based techniques and tools, which are applicable to a range of semantic models.
Estimating human pose and shape from monocular images is a long-standing problem in computer vision. Since the release of statistical body models, 3D human mesh recovery has been drawing broader attention. With the same goal of obtaining well-aligned and physically plausible mesh results, two paradigms have been developed to overcome challenges in the 2D-to-3D lifting process: i) an optimization-based paradigm, where different data terms and regularization terms are exploited as optimization objectives; and ii) a regression-based paradigm, where deep learning techniques are embraced to solve the problem in an end-to-end fashion. Meanwhile, continuous efforts are devoted to improving the quality of 3D mesh labels for a wide range of datasets. Though remarkable progress has been achieved in the past decade, the task is still challenging due to flexible body motions, diverse appearances, complex environments, and insufficient in-the-wild annotations. To the best of our knowledge, this is the first survey to focus on the task of monocular 3D human mesh recovery. We start with the introduction of body models and then elaborate recovery frameworks and training objectives by providing in-depth analyses of their strengths and weaknesses. We also summarize datasets, evaluation metrics, and benchmark results. Open issues and future directions are discussed in the end, hoping to motivate researchers and facilitate their research in this area. A regularly updated project page can be found at //github.com/tinatiansjz/hmr-survey.
Medical Visual Question Answering (VQA) is a combination of medical artificial intelligence and popular VQA challenges. Given a medical image and a clinically relevant question in natural language, the medical VQA system is expected to predict a plausible and convincing answer. Although the general-domain VQA has been extensively studied, the medical VQA still needs specific investigation and exploration due to its task features. In the first part of this survey, we cover and discuss the publicly available medical VQA datasets up to date about the data source, data quantity, and task feature. In the second part, we review the approaches used in medical VQA tasks. In the last part, we analyze some medical-specific challenges for the field and discuss future research directions.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.
We examine the problem of question answering over knowledge graphs, focusing on simple questions that can be answered by the lookup of a single fact. Adopting a straightforward decomposition of the problem into entity detection, entity linking, relation prediction, and evidence combination, we explore simple yet strong baselines. On the popular SimpleQuestions dataset, we find that basic LSTMs and GRUs plus a few heuristics yield accuracies that approach the state of the art, and techniques that do not use neural networks also perform reasonably well. These results show that gains from sophisticated deep learning techniques proposed in the literature are quite modest and that some previous models exhibit unnecessary complexity.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.