亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Given only a few observed entries from a low-rank matrix $X$, matrix completion is the problem of imputing the missing entries, and it formalizes a wide range of real-world settings that involve estimating missing data. However, when there are too few observed entries to complete the matrix, what other aspects of the underlying matrix can be reliably recovered? We study one such problem setting, that of "one-sided" matrix completion, where our goal is to recover the right singular vectors of $X$, even in the regime where recovering the left singular vectors is impossible, which arises when there are more rows than columns and very few observations. We propose a natural algorithm that involves imputing the missing values of the matrix $X^TX$ and show that even with only two observations per row in $X$, we can provably recover $X^TX$ as long as we have at least $\Omega(r^2 d \log d)$ rows, where $r$ is the rank and $d$ is the number of columns. We evaluate our algorithm on one-sided recovery of synthetic data and low-coverage genome sequencing. In these settings, our algorithm substantially outperforms standard matrix completion and a variety of direct factorization methods.

相關內容

The optimal branch number of MDS matrices makes them a preferred choice for designing diffusion layers in many block ciphers and hash functions. However, in lightweight cryptography, Near-MDS (NMDS) matrices with sub-optimal branch numbers offer a better balance between security and efficiency as a diffusion layer, compared to MDS matrices. In this paper, we study NMDS matrices, exploring their construction in both recursive and nonrecursive settings. We provide several theoretical results and explore the hardware efficiency of the construction of NMDS matrices. Additionally, we make comparisons between the results of NMDS and MDS matrices whenever possible. For the recursive approach, we study the DLS matrices and provide some theoretical results on their use. Some of the results are used to restrict the search space of the DLS matrices. We also show that over a field of characteristic 2, any sparse matrix of order $n\geq 4$ with fixed XOR value of 1 cannot be an NMDS when raised to a power of $k\leq n$. Following that, we use the generalized DLS (GDLS) matrices to provide some lightweight recursive NMDS matrices of several orders that perform better than the existing matrices in terms of hardware cost or the number of iterations. For the nonrecursive construction of NMDS matrices, we study various structures, such as circulant and left-circulant matrices, and their generalizations: Toeplitz and Hankel matrices. In addition, we prove that Toeplitz matrices of order $n>4$ cannot be simultaneously NMDS and involutory over a field of characteristic 2. Finally, we use GDLS matrices to provide some lightweight NMDS matrices that can be computed in one clock cycle. The proposed nonrecursive NMDS matrices of orders 4, 5, 6, 7, and 8 can be implemented with 24, 50, 65, 96, and 108 XORs over $\mathbb{F}_{2^4}$, respectively.

The vertex cover problem is a fundamental and widely studied combinatorial optimization problem. It is known that its standard linear programming relaxation is integral for bipartite graphs and half-integral for general graphs. As a consequence, the natural rounding algorithm based on this relaxation computes an optimal solution for bipartite graphs and a $2$-approximation for general graphs. This raises the question of whether one can interpolate the rounding curve of the standard linear programming relaxation in a beyond the worst-case manner, depending on how close the graph is to being bipartite. In this paper, we consider a simple rounding algorithm that exploits the knowledge of an induced bipartite subgraph to attain improved approximation ratios. Equivalently, we suppose that we work with a pair $(G, S)$, consisting of a graph with an odd cycle transversal. If $S$ is a stable set, we prove a tight approximation ratio of $1 + 1/\rho$, where $2\rho -1$ denotes the odd girth (i.e., length of the shortest odd cycle) of the contracted graph $\tilde{G} := G /S$ and satisfies $\rho \in [2,\infty]$. If $S$ is an arbitrary set, we prove a tight approximation ratio of $\left(1+1/\rho \right) (1 - \alpha) + 2 \alpha$, where $\alpha \in [0,1]$ is a natural parameter measuring the quality of the set $S$. The technique used to prove tight improved approximation ratios relies on a structural analysis of the contracted graph $\tilde{G}$. Tightness is shown by constructing classes of weight functions matching the obtained upper bounds. As a byproduct of the structural analysis, we obtain improved tight bounds on the integrality gap and the fractional chromatic number of 3-colorable graphs. We also discuss algorithmic applications in order to find good odd cycle transversals and show optimality of the analysis.

The Nystr\"om method is a popular choice for finding a low-rank approximation to a symmetric positive semi-definite matrix. The method can fail when applied to symmetric indefinite matrices, for which the error can be unboundedly large. In this work, we first identify the main challenges in finding a Nystr\"om approximation to symmetric indefinite matrices. We then prove the existence of a variant that overcomes the instability, and establish relative-error nuclear norm bounds of the resulting approximation that hold when the singular values decay rapidly. The analysis naturally leads to a practical algorithm, whose robustness is illustrated with experiments.

In matching markets such as job posting and online dating platforms, the recommender system plays a critical role in the success of the platform. Unlike standard recommender systems that suggest items to users, reciprocal recommender systems (RRSs) that suggest other users must take into account the mutual interests of users. In addition, ensuring that recommendation opportunities do not disproportionately favor popular users is essential for the total number of matches and for fairness among users. Existing recommendation methods in matching markets, however, face computational challenges on real-world scale platforms and depend on specific examination functions in the position-based model (PBM). In this paper, we introduce the reciprocal recommendation method based on the matching with transferable utility (TU matching) model in the context of ranking recommendations in matching markets, and propose a faster and examination-agnostic algorithm. Furthermore, we evaluate our approach on experiments with synthetic data and real-world data from an online dating platform in Japan. Our method performs better than or as well as existing methods in terms of the total number of matches and works well even in relatively large datasets for which one existing method does not work.

We study the reverse shortest path problem on disk graphs in the plane. In this problem we consider the proximity graph of a set of $n$ disks in the plane of arbitrary radii: In this graph two disks are connected if the distance between them is at most some threshold parameter $r$. The case of intersection graphs is a special case with $r=0$. We give an algorithm that, given a target length $k$, computes the smallest value of $r$ for which there is a path of length at most $k$ between some given pair of disks in the proximity graph. Our algorithm runs in $O^*(n^{5/4})$ randomized expected time, which improves to $O^*(n^{6/5})$ for unit disk graphs, where all the disks have the same radius. Our technique is robust and can be applied to many variants of the problem. One significant variant is the case of weighted proximity graphs, where edges are assigned real weights equal to the distance between the disks or between their centers, and $k$ is replaced by a target weight $w$; that is, we seek a path whose length is at most $w$. In other variants, we want to optimize a parameter different from $r$, such as a scale factor of the radii of the disks. The main technique for the decision version of the problem (determining whether the graph with a given $r$ has the desired property) is based on efficient implementations of BFS (for the unweighted case) and of Dijkstra's algorithm (for the weighted case), using efficient data structures for maintaining the bichromatic closest pair for certain bicliques and several distance functions. The optimization problem is then solved by combining the resulting decision procedure with enhanced variants of the interval shrinking and bifurcation technique of [4].

Penrose tilings are the most famous aperiodic tilings, and they have been studied extensively. In particular, patterns composed with hexagons ($H$), boats ($B$) and stars ($S$) were soon exhibited and many physicists published on what they later called $HBS$ tilings, but no article or book combines all we know about them. This work is done here, before introducing new decorations and properties including explicit substitutions. For the latter, the star comes in three versions so we have 5 prototiles in what we call the Star tileset. Yet this set yields exactly the strict $HBS$ tilings formed using 3 tiles decorated with either the usual decorations (arrows) or Ammann bar markings for instance. Another new tileset called Gemstones is also presented, derived from the Star tileset.

The behaviour of multi-agent learning in competitive settings is often considered under the restrictive assumption of a zero-sum game. Only under this strict requirement is the behaviour of learning well understood; beyond this, learning dynamics can often display non-convergent behaviours which prevent fixed-point analysis. Nonetheless, many relevant competitive games do not satisfy the zero-sum assumption. Motivated by this, we study a smooth variant of Q-Learning, a popular reinforcement learning dynamics which balances the agents' tendency to maximise their payoffs with their propensity to explore the state space. We examine this dynamic in games which are `close' to network zero-sum games and find that Q-Learning converges to a neighbourhood around a unique equilibrium. The size of the neighbourhood is determined by the `distance' to the zero-sum game, as well as the exploration rates of the agents. We complement these results by providing a method whereby, given an arbitrary network game, the `nearest' network zero-sum game can be found efficiently. As our experiments show, these guarantees are independent of whether the dynamics ultimately reach an equilibrium, or remain non-convergent.

We study the consistent k-center clustering problem. In this problem, the goal is to maintain a constant factor approximate $k$-center solution during a sequence of $n$ point insertions and deletions while minimizing the recourse, i.e., the number of changes made to the set of centers after each point insertion or deletion. Previous works by Lattanzi and Vassilvitskii [ICML '12] and Fichtenberger, Lattanzi, Norouzi-Fard, and Svensson [SODA '21] showed that in the incremental setting, where deletions are not allowed, one can obtain $k \cdot \textrm{polylog}(n) / n$ amortized recourse for both $k$-center and $k$-median, and demonstrated a matching lower bound. However, no algorithm for the fully dynamic setting achieves less than the trivial $O(k)$ changes per update, which can be obtained by simply reclustering the full dataset after every update. In this work, we give the first algorithm for consistent $k$-center clustering for the fully dynamic setting, i.e., when both point insertions and deletions are allowed, and improves upon a trivial $O(k)$ recourse bound. Specifically, our algorithm maintains a constant factor approximate solution while ensuring worst-case constant recourse per update, which is optimal in the fully dynamic setting. Moreover, our algorithm is deterministic and is therefore correct even if an adaptive adversary chooses the insertions and deletions.

Large Language Models (LLMs) have significantly advanced natural language processing (NLP) with their impressive language understanding and generation capabilities. However, their performance may be suboptimal for long-tail or domain-specific tasks due to limited exposure to domain-specific knowledge and vocabulary. Additionally, the lack of transparency of most state-of-the-art (SOTA) LLMs, which can only be accessed via APIs, impedes further fine-tuning with custom data. Moreover, data privacy is a significant concern. To address these challenges, we propose the novel Parametric Knowledge Guiding (PKG) framework, which equips LLMs with a knowledge-guiding module to access relevant knowledge at runtime without altering the LLMs' parameters. Our PKG is based on open-source "white-box" small language models, allowing offline storage of any knowledge that LLMs require. We demonstrate that our PKG framework can enhance the performance of "black-box" LLMs on a range of long-tail and domain-specific downstream tasks requiring factual, tabular, medical, and multimodal knowledge.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

北京阿比特科技有限公司