亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Reliability of AI systems is a fundamental concern for the successful deployment and widespread adoption of AI technologies. Unfortunately, the escalating complexity and heterogeneity of AI hardware systems make them inevitably and increasingly susceptible to hardware faults (e.g., bit flips) that can potentially corrupt model parameters. Given this challenge, this paper aims to answer a critical question: How likely is a parameter corruption to result in an incorrect model output? To systematically answer this question, we propose a novel quantitative metric, Parameter Vulnerability Factor (PVF), inspired by architectural vulnerability factor (AVF) in computer architecture community, aiming to standardize the quantification of AI model resilience/vulnerability against parameter corruptions. We define a model parameter's PVF as the probability that a corruption in that particular model parameter will result in an incorrect output. Similar to AVF, this statistical concept can be derived from statistically extensive and meaningful fault injection (FI) experiments. In this paper, we present several use cases on applying PVF to three types of tasks/models during inference -- recommendation (DLRM), vision classification (CNN), and text classification (BERT). PVF can provide pivotal insights to AI hardware designers in balancing the tradeoff between fault protection and performance/efficiency such as mapping vulnerable AI parameter components to well-protected hardware modules. PVF metric is applicable to any AI model and has a potential to help unify and standardize AI vulnerability/resilience evaluation practice.

相關內容

It is extremely memory-hungry to train Large Language Models (LLM). To solve this problem, existing work exploits the combination of CPU and GPU for the training process, such as ZeRO-Offload. Such a technique largely democratizes billion-scale model training, making it possible to train with few consumer graphics cards. However, based on our observation, existing frameworks often provide coarse-grained memory management and require experienced experts in configuration tuning, leading to suboptimal hardware utilization and performance. This paper proposes ProTrain, a novel training system that intelligently balances memory usage and performance by coordinating memory, computation, and IO. ProTrain achieves adaptive memory management through Chunk-Based Model State Management and Block-Wise Activation Management, guided by a Memory-Aware Runtime Profiler without user intervention. ProTrain does not change the training algorithm and thus does not compromise accuracy. Experiments show that ProTrain improves training throughput by 1.43$\times$ to 2.71$\times$ compared to the SOTA training systems.

Recent developments in Large Language Models (LLMs) have demonstrated their remarkable capabilities across a range of tasks. Questions, however, persist about the nature of LLMs and their potential to integrate common-sense human knowledge when performing tasks involving information about the real physical world. This paper delves into these questions by exploring how LLMs can be extended to interact with and reason about the physical world through IoT sensors and actuators, a concept that we term "Penetrative AI". The paper explores such an extension at two levels of LLMs' ability to penetrate into the physical world via the processing of sensory signals. Our preliminary findings indicate that LLMs, with ChatGPT being the representative example in our exploration, have considerable and unique proficiency in employing the embedded world knowledge for interpreting IoT sensor data and reasoning over them about tasks in the physical realm. Not only this opens up new applications for LLMs beyond traditional text-based tasks, but also enables new ways of incorporating human knowledge in cyber-physical systems.

Reliability of AI systems is a fundamental concern for the successful deployment and widespread adoption of AI technologies. Unfortunately, the escalating complexity and heterogeneity of AI hardware systems make them increasingly susceptible to hardware faults, e.g., silent data corruptions (SDC), that can potentially corrupt model parameters. When this occurs during AI inference/servicing, it can potentially lead to incorrect or degraded model output for users, ultimately affecting the quality and reliability of AI services. In light of the escalating threat, it is crucial to address key questions: How vulnerable are AI models to parameter corruptions, and how do different components (such as modules, layers) of the models exhibit varying vulnerabilities to parameter corruptions? To systematically address this question, we propose a novel quantitative metric, Parameter Vulnerability Factor (PVF), inspired by architectural vulnerability factor (AVF) in computer architecture community, aiming to standardize the quantification of AI model vulnerability against parameter corruptions. We define a model parameter's PVF as the probability that a corruption in that particular model parameter will result in an incorrect output. In this paper, we present several use cases on applying PVF to three types of tasks/models during inference -- recommendation (DLRM), vision classification (CNN), and text classification (BERT), while presenting an in-depth vulnerability analysis on DLRM. PVF can provide pivotal insights to AI hardware designers in balancing the tradeoff between fault protection and performance/efficiency such as mapping vulnerable AI parameter components to well-protected hardware modules. PVF metric is applicable to any AI model and has a potential to help unify and standardize AI vulnerability/resilience evaluation practice.

Understanding spatial location and relationships is a fundamental capability for modern artificial intelligence systems. Insights from human spatial cognition provide valuable guidance in this domain. Recent neuroscientific discoveries have highlighted the role of grid cells as a fundamental neural component for spatial representation, including distance computation, path integration, and scale discernment. In this paper, we introduce a novel positional encoding scheme inspired by Fourier analysis and the latest findings in computational neuroscience regarding grid cells. Assuming that grid cells encode spatial position through a summation of Fourier basis functions, we demonstrate the translational invariance of the grid representation during inner product calculations. Additionally, we derive an optimal grid scale ratio for multi-dimensional Euclidean spaces based on principles of biological efficiency. Utilizing these computational principles, we have developed a **Grid**-cell inspired **Positional Encoding** technique, termed **GridPE**, for encoding locations within high-dimensional spaces. We integrated GridPE into the Pyramid Vision Transformer architecture. Our theoretical analysis shows that GridPE provides a unifying framework for positional encoding in arbitrary high-dimensional spaces. Experimental results demonstrate that GridPE significantly enhances the performance of transformers, underscoring the importance of incorporating neuroscientific insights into the design of artificial intelligence systems.

Data is the lifeblood of the modern world, forming a fundamental part of AI, decision-making, and research advances. With increase in interest in data, governments have taken important steps towards a regulated data world, drastically impacting data sharing and data usability and resulting in massive amounts of data confined within the walls of organizations. While synthetic data generation (SDG) is an appealing solution to break down these walls and enable data sharing, the main drawback of existing solutions is the assumption of a trusted aggregator for generative model training. Given that many data holders may not want to, or be legally allowed to, entrust a central entity with their raw data, we propose a framework for the collaborative and private generation of synthetic tabular data from distributed data holders. Our solution is general, applicable to any marginal-based SDG, and provides input privacy by replacing the trusted aggregator with secure multi-party computation (MPC) protocols and output privacy via differential privacy (DP). We demonstrate the applicability and scalability of our approach for the state-of-the-art select-measure-generate SDG algorithms MWEM+PGM and AIM.

As generative Artificial Intelligence (AI) technologies evolve, they offer unprecedented potential to automate and enhance various tasks, including coding. Natural Language-Oriented Programming (NLOP), a vision introduced in this paper, harnesses this potential by allowing developers to articulate software requirements and logic in their natural language, thereby democratizing software creation. This approach streamlines the development process and significantly lowers the barrier to entry for software engineering, making it feasible for non-experts to contribute effectively to software projects. By simplifying the transition from concept to code, NLOP can accelerate development cycles, enhance collaborative efforts, and reduce misunderstandings in requirement specifications. This paper reviews various programming models, assesses their contributions and limitations, and highlights that natural language will be the new programming language. Through this comparison, we illustrate how NLOP stands to transform the landscape of software engineering by fostering greater inclusivity and innovation.

Data exploration is a challenging process in which users examine a dataset by iteratively employing a series of queries. While in some cases the user explores a new dataset to become familiar with it, more often, the exploration process is conducted with a specific analysis goal or question in mind. To assist users in exploring a new dataset, Automated Data Exploration (ADE) systems have been devised in previous work. These systems aim to auto-generate a full exploration session, containing a sequence of queries that showcase interesting elements of the data. However, existing ADE systems are often constrained by a predefined objective function, thus always generating the same session for a given dataset. Therefore, their effectiveness in goal-oriented exploration, in which users need to answer specific questions about the data, are extremely limited. To this end, this paper presents LINX, a generative system augmented with a natural language interface for goal-oriented ADE. Given an input dataset and an analytical goal described in natural language, LINX generates a personalized exploratory session that is relevant to the user's goal. LINX utilizes a Large Language Model (LLM) to interpret the input analysis goal, and then derive a set of specifications for the desired output exploration session. These specifications are then transferred to a novel, modular ADE engine based on Constrained Deep Reinforcement Learning (CDRL), which can adapt its output according to the specified instructions. To validate LINX's effectiveness, we introduce a new benchmark dataset for goal-oriented exploration and conduct an extensive user study. Our analysis underscores LINX's superior capability in producing exploratory notebooks that are significantly more relevant and beneficial than those generated by existing solutions, including ChatGPT, goal-agnostic ADE, and commercial systems.

Large Language Model (LLM) services and models often come with legal rules on who can use them and how they must use them. Assessing the compliance of the released LLMs is crucial, as these rules protect the interests of the LLM contributor and prevent misuse. In this context, we describe the novel fingerprinting problem of Black-box Identity Verification (BBIV). The goal is to determine whether a third-party application uses a certain LLM through its chat function. We propose a method called Targeted Random Adversarial Prompt (TRAP) that identifies the specific LLM in use. We repurpose adversarial suffixes, originally proposed for jailbreaking, to get a pre-defined answer from the target LLM, while other models give random answers. TRAP detects the target LLMs with over 95% true positive rate at under 0.2% false positive rate even after a single interaction. TRAP remains effective even if the LLM has minor changes that do not significantly alter the original function.

Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

北京阿比特科技有限公司