In this paper, for an odd prime $p$, several classes of two-weight linear codes over the finite field $\mathbb{F}_p$ are constructed from the defining sets, and then their complete weight distributions are determined by employing character sums. These codes can be suitable for applications in secret sharing schemes. Furthermore, two new classes of projective two-weight codes are obtained, and then two new classes of strongly regular graphs are given.
We propose a new family of spatially coupled product codes, called sub-block rearranged staircase (SR-staircase) codes. Each SR-staircase code block is constructed by encoding rearranged preceding code blocks, where the rearrangement involves sub-blocks decomposition and transposition. The major advantage of the proposed construction over the conventional staircase construction is that it enables to employ stronger algebraic component codes to achieve better waterfall and error floor performance with lower miscorrection probability under low-complexity iterative bounded distance decoding (iBDD) while having the same code rate and similar blocklength as the conventional staircase codes. We characterize the decoding threshold of the proposed codes under iBDD by using density evolution and also derive the conditions under which they achieve a better decoding threshold than that of the conventional staircase codes. Further, we investigate the error floor performance by analyzing the contributing error patterns and their multiplicities. Both theoretical and simulation results show that SR-staircase codes outperform the conventional staircase codes in terms of waterfall and error floor while the performance can be further improved by using a large coupling width.
We introduce Stochastic Asymptotical Regularization (SAR) methods for the uncertainty quantification of the stable approximate solution of ill-posed linear-operator equations, which are deterministic models for numerous inverse problems in science and engineering. We prove the regularizing properties of SAR with regard to mean-square convergence. We also show that SAR is an optimal-order regularization method for linear ill-posed problems provided that the terminating time of SAR is chosen according to the smoothness of the solution. This result is proven for both a priori and a posteriori stopping rules under general range-type source conditions. Furthermore, some converse results of SAR are verified. Two iterative schemes are developed for the numerical realization of SAR, and the convergence analyses of these two numerical schemes are also provided. A toy example and a real-world problem of biosensor tomography are studied to show the accuracy and the advantages of SAR: compared with the conventional deterministic regularization approaches for deterministic inverse problems, SAR can provide the uncertainty quantification of the quantity of interest, which can in turn be used to reveal and explicate the hidden information about real-world problems, usually obscured by the incomplete mathematical modeling and the ascendence of complex-structured noise.
In this article, we present a new construction of evaluation codes in the Hamming metric, which we call twisted Reed-Solomon codes. Whereas Reed-Solomon (RS) codes are MDS codes, this need not be the case for twisted RS codes. Nonetheless, we show that our construction yields several families of MDS codes. Further, for a large subclass of (MDS) twisted RS codes, we show that the new codes are not generalized RS codes. To achieve this, we use properties of Schur squares of codes as well as an explicit description of the dual of a large subclass of our codes. We conclude the paper with a description of a decoder, that performs very well in practice as shown by extensive simulation results.
The generalization capacity of various machine learning models exhibits different phenomena in the under- and over-parameterized regimes. In this paper, we focus on regression models such as feature regression and kernel regression and analyze a generalized weighted least-squares optimization method for computational learning and inversion with noisy data. The highlight of the proposed framework is that we allow weighting in both the parameter space and the data space. The weighting scheme encodes both a priori knowledge on the object to be learned and a strategy to weight the contribution of different data points in the loss function. Here, we characterize the impact of the weighting scheme on the generalization error of the learning method, where we derive explicit generalization errors for the random Fourier feature model in both the under- and over-parameterized regimes. For more general feature maps, error bounds are provided based on the singular values of the feature matrix. We demonstrate that appropriate weighting from prior knowledge can improve the generalization capability of the learned model.
We present and investigate a new type of implicit fractional linear multistep method of order two for fractional initial value problems. The method is obtained from the second order super convergence of the Gr\"unwald-Letnikov approximation of the fractional derivative at a non-integer shift point. The proposed method is of order two consistency and coincides with the backward difference method of order two for classical initial value problems when the order of the derivative is one. The weight coefficients of the proposed method are obtained from the Gr\"unwald weights and hence computationally efficient compared with that of the fractional backward difference formula of order two. The stability properties are analyzed and shown that the stability region of the method is larger than that of the fractional Adams-Moulton method of order two and the fractional trapezoidal method. Numerical result and illustrations are presented to justify the analytical theories.
Consider a set $P$ of $n$ points in $\mathbb{R}^d$. In the discrete median line segment problem, the objective is to find a line segment bounded by a pair of points in $P$ such that the sum of the Euclidean distances from $P$ to the line segment is minimized. In the continuous median line segment problem, a real number $\ell>0$ is given, and the goal is to locate a line segment of length $\ell$ in $\mathbb{R}^d$ such that the sum of the Euclidean distances between $P$ and the line segment is minimized. To begin with, we show how to compute $(1+\epsilon\Delta)$- and $(1+\epsilon)$-approximations to a discrete median line segment in time $O(n\epsilon^{-2d}\log n)$ and $O(n^2\epsilon^{-d})$, respectively, where $\Delta$ is the spread of line segments spanned by pairs of points. While developing our algorithms, by using the principle of pair decomposition, we derive new data structures that allow us to quickly approximate the sum of the distances from a set of points to a given line segment or point. To our knowledge, our utilization of pair decompositions for solving minsum facility location problems is the first of its kind -- it is versatile and easily implementable. Furthermore, we prove that it is impossible to construct a continuous median line segment for $n\geq3$ non-collinear points in the plane by using only ruler and compass. In view of this, we present an $O(n^d\epsilon^{-d})$-time algorithm for approximating a continuous median line segment in $\mathbb{R}^d$ within a factor of $1+\epsilon$. The algorithm is based upon generalizing the point-segment pair decomposition from the discrete to the continuous domain. Last but not least, we give an $(1+\epsilon)$-approximation algorithm, whose time complexity is sub-quadratic in $n$, for solving the constrained median line segment problem in $\mathbb{R}^2$ where an endpoint or the slope of the median line segment is given at input.
The satisfaction probability $\sigma(\phi) := \Pr_{\beta:\mathrm{vars}(\phi) \to \{0,1\}}[\beta\models \phi]$ of a propositional formula $\phi$ is the likelihood that a random assignment $\beta$ makes the formula true. We study the complexity of the problem $k$sat-prob$_{>\delta} = \{ \phi$ is a $k\mathrm{cnf}$ formula $\mid \sigma(\phi) > \delta\}$ for fixed $k$ and $\delta$. While 3sat-prob$_{>0}$ = 3sat is NP-complete and sat-prob$_{>1/2}$ is PP-complete, Akmal and Williams recently showed 3sat-prob$_{>1/2} \in$ P and 4sat-prob$_{>1/2} \in$ NP-complete; but the methods used to prove these striking results stay silent about, say, 4sat-prob$_{>1/3}$, leaving the computational complexity of $k$sat-prob$_{>\delta}$ open for most $k$ and $\delta$. In the present paper we give a complete characterization in the form of a trichotomy: $k$sat-prob$_{>\delta}$ lies in AC$^0$, is NL-complete, or is NP-complete; and given $k$ and $\delta$ we can decide which of the three applies. The proof of the trichotomy hinges on a new order-theoretic insight: Every set of $k$cnf formulas contains a formula of maximum satisfaction probability. This deceptively simple result allows us to (1) kernelize $k$sat-prob$_{\ge \delta}$, (2) show that the variables of the kernel form a strong backdoor set when the trichotomy states membership in AC$^0$ or NL, and (3) prove a new locality property for the models of second-order formulas that describe problems like $k$sat-prob$_{\ge \delta}$. The locality property will allow us to prove a conjecture of Akmal and Williams: The majority-of-majority satisfaction problem for $k$cnfs lies in P for all $k$.
We study the Bahadur efficiency of several weighted L2--type goodness--of--fit tests based on the empirical characteristic function. The methods considered are for normality and exponentiality testing, and for testing goodness--of--fit to the logistic distribution. Our results are helpful in deciding which specific test a potential practitioner should apply. For the celebrated BHEP and energy tests for normality we obtain novel efficiency results, with some of them in the multivariate case, while in the case of the logistic distribution this is the first time that efficiencies are computed for any composite goodness--of--fit test.
We establish a complete classification of binary group codes with complementary duals for a finite group and explicitly determine the number of linear complementary dual (LCD) cyclic group codes by using cyclotomic cosets. The dimension and the minimum distance for LCD group codes are explored. Finally, we find a connection between LCD MDS group codes and maximal ideals.
A toric code, introduced by Hansen to extend the Reed-Solomon code as a $k$-dimensional subspace of $\mathbb{F}_q^n$, is determined by a toric variety or its associated integral convex polytope $P \subseteq [0,q-2]^n$, where $k=|P \cap \mathbb{Z}^n|$ (the number of integer lattice points of $P$). There are two relevant parameters that determine the quality of a code: the information rate, which measures how much information is contained in a single bit of each codeword; and the relative minimum distance, which measures how many errors can be corrected relative to how many bits each codeword has. Soprunov and Soprunova defined a good infinite family of codes to be a sequence of codes of unbounded polytope dimension such that neither the corresponding information rates nor relative minimum distances go to 0 in the limit. We examine different ways of constructing families of codes by considering polytope operations such as the join and direct sum. In doing so, we give conditions under which no good family can exist and strong evidence that there is no such good family of codes.