亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A primary challenge of physics-informed machine learning (PIML) is its generalization beyond the training domain, especially when dealing with complex physical problems represented by partial differential equations (PDEs). This paper aims to enhance the generalization capabilities of PIML, facilitating practical, real-world applications where accurate predictions in unexplored regions are crucial. We leverage the inherent causality and temporal sequential characteristics of PDE solutions to fuse PIML models with recurrent neural architectures based on systems of ordinary differential equations, referred to as neural oscillators. Through effectively capturing long-time dependencies and mitigating the exploding and vanishing gradient problem, neural oscillators foster improved generalization in PIML tasks. Extensive experimentation involving time-dependent nonlinear PDEs and biharmonic beam equations demonstrates the efficacy of the proposed approach. Incorporating neural oscillators outperforms existing state-of-the-art methods on benchmark problems across various metrics. Consequently, the proposed method improves the generalization capabilities of PIML, providing accurate solutions for extrapolation and prediction beyond the training data.

相關內容

The design of particle simulation methods for collisional plasma physics has always represented a challenge due to the unbounded total collisional cross section, which prevents a natural extension of the classical Direct Simulation Monte Carlo (DSMC) method devised for the Boltzmann equation. One way to overcome this problem is to consider the design of Monte Carlo algorithms that are robust in the so-called grazing collision limit. In the first part of this manuscript, we will focus on the construction of collision algorithms for the Landau-Fokker-Planck equation based on the grazing collision asymptotics and which avoids the use of iterative solvers. Subsequently, we discuss problems involving uncertainties and show how to develop a stochastic Galerkin projection of the particle dynamics which permits to recover spectral accuracy for smooth solutions in the random space. Several classical numerical tests are reported to validate the present approach.

Federated Learning (FL) has emerged as a privacy-preserving machine learning paradigm facilitating collaborative training across multiple clients without sharing local data. Despite advancements in edge device capabilities, communication bottlenecks present challenges in aggregating a large number of clients; only a portion of the clients can update their parameters upon each global aggregation. This phenomenon introduces the critical challenge of stragglers in FL and the profound impact of client scheduling policies on global model convergence and stability. Existing scheduling strategies address staleness but predominantly focus on either timeliness or content. Motivated by this, we introduce the novel concept of Version Age of Information (VAoI) to FL. Unlike traditional Age of Information metrics, VAoI considers both timeliness and content staleness. Each client's version age is updated discretely, indicating the freshness of information. VAoI is incorporated into the client scheduling policy to minimize the average VAoI, mitigating the impact of outdated local updates and enhancing the stability of FL systems.

This study introduces a novel machine learning framework, integrating domain knowledge, to accurately predict the bearing capacity of CFSTs, bridging the gap between traditional engineering and machine learning techniques. Utilizing a comprehensive database of 2621 experimental data points on CFSTs, we developed a Domain Knowledge Enhanced Neural Network (DKNN) model. This model incorporates advanced feature engineering techniques, including Pearson correlation, XGBoost, and Random tree algorithms. The DKNN model demonstrated a marked improvement in prediction accuracy, with a Mean Absolute Percentage Error (MAPE) reduction of over 50% compared to existing models. Its robustness was confirmed through extensive performance assessments, maintaining high accuracy even in noisy environments. Furthermore, sensitivity and SHAP analysis were conducted to assess the contribution of each effective parameter to axial load capacity and propose design recommendations for the diameter of cross-section, material strength range and material combination. This research advances CFST predictive modelling, showcasing the potential of integrating machine learning with domain expertise in structural engineering. The DKNN model sets a new benchmark for accuracy and reliability in the field.

The challenge in biomarker discovery using machine learning from omics data lies in the abundance of molecular features but scarcity of samples. Most feature selection methods in machine learning require evaluating various sets of features (models) to determine the most effective combination. This process, typically conducted using a validation dataset, involves testing different feature sets to optimize the model's performance. Evaluations have performance estimation error and when the selection involves many models the best ones are almost certainly overestimated. Biomarker identification with feature selection methods can be addressed as a multi-objective problem with trade-offs between predictive ability and parsimony in the number of features. Genetic algorithms are a popular tool for multi-objective optimization but they evolve numerous solutions thus are prone to overestimation. Methods have been proposed to reduce the overestimation after a model has already been selected in single-objective problems, but no algorithm existed capable of reducing the overestimation during the optimization, improving model selection, or applied in the more general multi-objective domain. We propose DOSA-MO, a novel multi-objective optimization wrapper algorithm that learns how the original estimation, its variance, and the feature set size of the solutions predict the overestimation. DOSA-MO adjusts the expectation of the performance during the optimization, improving the composition of the solution set. We verify that DOSA-MO improves the performance of a state-of-the-art genetic algorithm on left-out or external sample sets, when predicting cancer subtypes and/or patient overall survival, using three transcriptomics datasets for kidney and breast cancer.

Graph representation learning (GRL) is critical for extracting insights from complex network structures, but it also raises security concerns due to potential privacy vulnerabilities in these representations. This paper investigates the structural vulnerabilities in graph neural models where sensitive topological information can be inferred through edge reconstruction attacks. Our research primarily addresses the theoretical underpinnings of cosine-similarity-based edge reconstruction attacks (COSERA), providing theoretical and empirical evidence that such attacks can perfectly reconstruct sparse Erdos Renyi graphs with independent random features as graph size increases. Conversely, we establish that sparsity is a critical factor for COSERA's effectiveness, as demonstrated through analysis and experiments on stochastic block models. Finally, we explore the resilience of (provably) private graph representations produced via noisy aggregation (NAG) mechanism against COSERA. We empirically delineate instances wherein COSERA demonstrates both efficacy and deficiency in its capacity to function as an instrument for elucidating the trade-off between privacy and utility.

Constant (naive) imputation is still widely used in practice as this is a first easy-to-use technique to deal with missing data. Yet, this simple method could be expected to induce a large bias for prediction purposes, as the imputed input may strongly differ from the true underlying data. However, recent works suggest that this bias is low in the context of high-dimensional linear predictors when data is supposed to be missing completely at random (MCAR). This paper completes the picture for linear predictors by confirming the intuition that the bias is negligible and that surprisingly naive imputation also remains relevant in very low dimension.To this aim, we consider a unique underlying random features model, which offers a rigorous framework for studying predictive performances, whilst the dimension of the observed features varies.Building on these theoretical results, we establish finite-sample bounds on stochastic gradient (SGD) predictors applied to zero-imputed data, a strategy particularly well suited for large-scale learning.If the MCAR assumption appears to be strong, we show that similar favorable behaviors occur for more complex missing data scenarios.

Most state-of-the-art machine learning techniques revolve around the optimisation of loss functions. Defining appropriate loss functions is therefore critical to successfully solving problems in this field. We present a survey of the most commonly used loss functions for a wide range of different applications, divided into classification, regression, ranking, sample generation and energy based modelling. Overall, we introduce 33 different loss functions and we organise them into an intuitive taxonomy. Each loss function is given a theoretical backing and we describe where it is best used. This survey aims to provide a reference of the most essential loss functions for both beginner and advanced machine learning practitioners.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.

北京阿比特科技有限公司