Group sequential designs in clinical trials allow for interim efficacy and futility monitoring. Adjustment for baseline covariates can increase power and precision of estimated effects. However, inconsistently applying covariate adjustment throughout the stages of a group sequential trial can result in inflation of type I error, biased point estimates, and anti-conservative confidence intervals. We propose methods for performing correct interim monitoring, estimation, and inference in this setting that avoid these issues. We focus on two-arm trials with simple, balanced randomization and continuous outcomes. We study the performance of our boundary, estimation, and inference adjustments in simulation studies. We end with recommendations about the application of covariate adjustment in group sequential designs.
The deployment of agile autonomous systems in challenging, unstructured environments requires adaptation capabilities and robustness to uncertainties. Existing robust and adaptive controllers, such as those based on model predictive control (MPC), can achieve impressive performance at the cost of heavy online onboard computations. Strategies that efficiently learn robust and onboard-deployable policies from MPC have emerged, but they still lack fundamental adaptation capabilities. In this work, we extend an existing efficient Imitation Learning (IL) algorithm for robust policy learning from MPC with the ability to learn policies that adapt to challenging model/environment uncertainties. The key idea of our approach consists in modifying the IL procedure by conditioning the policy on a learned lower-dimensional model/environment representation that can be efficiently estimated online. We tailor our approach to the task of learning an adaptive position and attitude control policy to track trajectories under challenging disturbances on a multirotor. Evaluations in simulation show that a high-quality adaptive policy can be obtained in about $1.3$ hours. We additionally empirically demonstrate rapid adaptation to in- and out-of-training-distribution uncertainties, achieving a $6.1$ cm average position error under wind disturbances that correspond to about $50\%$ of the weight of the robot, and that are $36\%$ larger than the maximum wind seen during training.
Face recognition models embed a face image into a low-dimensional identity vector containing abstract encodings of identity-specific facial features that allow individuals to be distinguished from one another. We tackle the challenging task of inverting the latent space of pre-trained face recognition models without full model access (i.e. black-box setting). A variety of methods have been proposed in literature for this task, but they have serious shortcomings such as a lack of realistic outputs and strong requirements for the data set and accessibility of the face recognition model. By analyzing the black-box inversion problem, we show that the conditional diffusion model loss naturally emerges and that we can effectively sample from the inverse distribution even without an identity-specific loss. Our method, named identity denoising diffusion probabilistic model (ID3PM), leverages the stochastic nature of the denoising diffusion process to produce high-quality, identity-preserving face images with various backgrounds, lighting, poses, and expressions. We demonstrate state-of-the-art performance in terms of identity preservation and diversity both qualitatively and quantitatively, and our method is the first black-box face recognition model inversion method that offers intuitive control over the generation process.
We provide a refined characterization of the super-Turing computational power of analog, evolving, and stochastic neural networks based on the Kolmogorov complexity of their real weights, evolving weights, and real probabilities, respectively. First, we retrieve an infinite hierarchy of classes of analog networks defined in terms of the Kolmogorov complexity of their underlying real weights. This hierarchy is located between the complexity classes $\mathbf{P}$ and $\mathbf{P/poly}$. Then, we generalize this result to the case of evolving networks. A similar hierarchy of Kolomogorov-based complexity classes of evolving networks is obtained. This hierarchy also lies between $\mathbf{P}$ and $\mathbf{P/poly}$. Finally, we extend these results to the case of stochastic networks employing real probabilities as source of randomness. An infinite hierarchy of stochastic networks based on the Kolmogorov complexity of their probabilities is therefore achieved. In this case, the hierarchy bridges the gap between $\mathbf{BPP}$ and $\mathbf{BPP/log^*}$. Beyond proving the existence and providing examples of such hierarchies, we describe a generic way of constructing them based on classes of functions of increasing complexity. For the sake of clarity, this study is formulated within the framework of echo state networks. Overall, this paper intends to fill the missing results and provide a unified view about the refined capabilities of analog, evolving and stochastic neural networks.
Recently, significant progress has been made in understanding the generalization of neural networks (NNs) trained by gradient descent (GD) using the algorithmic stability approach. However, most of the existing research has focused on one-hidden-layer NNs and has not addressed the impact of different network scaling parameters. In this paper, we greatly extend the previous work \cite{lei2022stability,richards2021stability} by conducting a comprehensive stability and generalization analysis of GD for multi-layer NNs. For two-layer NNs, our results are established under general network scaling parameters, relaxing previous conditions. In the case of three-layer NNs, our technical contribution lies in demonstrating its nearly co-coercive property by utilizing a novel induction strategy that thoroughly explores the effects of over-parameterization. As a direct application of our general findings, we derive the excess risk rate of $O(1/\sqrt{n})$ for GD algorithms in both two-layer and three-layer NNs. This sheds light on sufficient or necessary conditions for under-parameterized and over-parameterized NNs trained by GD to attain the desired risk rate of $O(1/\sqrt{n})$. Moreover, we demonstrate that as the scaling parameter increases or the network complexity decreases, less over-parameterization is required for GD to achieve the desired error rates. Additionally, under a low-noise condition, we obtain a fast risk rate of $O(1/n)$ for GD in both two-layer and three-layer NNs.
Additive manufacturing has revolutionized the manufacturing of complex parts by enabling direct material joining and offers several advantages such as cost-effective manufacturing of complex parts, reducing manufacturing waste, and opening new possibilities for manufacturing automation. One group of materials for which additive manufacturing holds great potential for enhancing component performance and properties is Functionally Graded Materials (FGMs). FGMs are advanced composite materials that exhibit smoothly varying properties making them desirable for applications in aerospace, automobile, biomedical, and defense industries. Such composition differs from traditional composite materials, since the location-dependent composition changes gradually in FGMs, leading to enhanced properties. Recently, machine learning techniques have emerged as a promising means for fabrication of FGMs through optimizing processing parameters, improving product quality, and detecting manufacturing defects. This paper first provides a brief literature review of works related to FGM fabrication, followed by reviewing works on employing machine learning in additive manufacturing, Afterward, we provide an overview of published works in the literature related to the application of machine learning methods in Directed Energy Deposition and for fabrication of FGMs.
Flexible robots may overcome some of the industry's major challenges, such as enabling intrinsically safe human-robot collaboration and achieving a higher load-to-mass ratio. However, controlling flexible robots is complicated due to their complex dynamics, which include oscillatory behavior and a high-dimensional state space. NMPC offers an effective means to control such robots, but its extensive computational demands often limit its application in real-time scenarios. To enable fast control of flexible robots, we propose a framework for a safe approximation of NMPC using imitation learning and a predictive safety filter. Our framework significantly reduces computation time while incurring a slight loss in performance. Compared to NMPC, our framework shows more than a eightfold improvement in computation time when controlling a three-dimensional flexible robot arm in simulation, all while guaranteeing safety constraints. Notably, our approach outperforms conventional reinforcement learning methods. The development of fast and safe approximate NMPC holds the potential to accelerate the adoption of flexible robots in industry.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.
Recent developments in image classification and natural language processing, coupled with the rapid growth in social media usage, have enabled fundamental advances in detecting breaking events around the world in real-time. Emergency response is one such area that stands to gain from these advances. By processing billions of texts and images a minute, events can be automatically detected to enable emergency response workers to better assess rapidly evolving situations and deploy resources accordingly. To date, most event detection techniques in this area have focused on image-only or text-only approaches, limiting detection performance and impacting the quality of information delivered to crisis response teams. In this paper, we present a new multimodal fusion method that leverages both images and texts as input. In particular, we introduce a cross-attention module that can filter uninformative and misleading components from weak modalities on a sample by sample basis. In addition, we employ a multimodal graph-based approach to stochastically transition between embeddings of different multimodal pairs during training to better regularize the learning process as well as dealing with limited training data by constructing new matched pairs from different samples. We show that our method outperforms the unimodal approaches and strong multimodal baselines by a large margin on three crisis-related tasks.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.