亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a machine learning framework capable of consistently inferring mathematical expressions of the hyperelastic energy functionals for incompressible materials from sparse experimental data and physical laws. To achieve this goal, we propose a polyconvex neural additive model (PNAM) that enables us to express the hyperelasticity model in a learnable feature space while enforcing polyconvexity. An upshot of this feature space obtained via PNAM is that (1) it is spanned by a set univariate basis that can be re-parametrized with a more complex mathematical form, and (2) the resultant elasticity model is guaranteed to fulfill the polyconvexity, which ensures that the acoustic tensor remains elliptic for any deformation. To further improve the interpretability, we use genetic programming to convert each univariate basis into a compact mathematical expression. The resultant multi-variable mathematical models obtained from this proposed framework are not only more interpretable but are also proven to fulfill physical laws. By controlling the compactness of the learned symbolic form, the machine learning-generated mathematical model also requires fewer arithmetic operations than the deep neural network counterparts during deployment. This latter attribute is crucial for scaling large-scale simulations where the constitutive responses of every integration point must be updated within each incremental time step. We compare our proposed model discovery framework against other state-of-the-art alternatives to assess the robustness and efficiency of the training algorithms and examine the trade-off between interpretability, accuracy, and precision of the learned symbolic hyperelasticity models obtained from different approaches. Our numerical results suggest that our approach extrapolates well outside the training data regime due to the precise incorporation of physics-based knowledge.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 分段 · 估計/估計量 · 價值函數 · 值域 ·
2023 年 11 月 22 日

We consider the task of estimating functions belonging to a specific class of nonsmooth functions, namely so-called tame functions. These functions appear in a wide range of applications: training deep learning, value functions of mixed-integer programs, or wave functions of small molecules. We show that tame functions are approximable by piecewise polynomials on any full-dimensional cube. We then present the first ever mixed-integer programming formulation of piecewise polynomial regression. Together, these can be used to estimate tame functions. We demonstrate promising computational results.

The simulation of geological facies in an unobservable volume is essential in various geoscience applications. Given the complexity of the problem, deep generative learning is a promising approach to overcome the limitations of traditional geostatistical simulation models, in particular their lack of physical realism. This research aims to investigate the application of generative adversarial networks and deep variational inference for conditionally simulating meandering channels in underground volumes. In this paper, we review the generative deep learning approaches, in particular the adversarial ones and the stabilization techniques that aim to facilitate their training. The proposed approach is tested on 2D and 3D simulations generated by the stochastic process-based model Flumy. Morphological metrics are utilized to compare our proposed method with earlier iterations of generative adversarial networks. The results indicate that by utilizing recent stabilization techniques, generative adversarial networks can efficiently sample from target data distributions. Moreover, we demonstrate the ability to simulate conditioned simulations through the latent variable model property of the proposed approach.

As a surrogate for computationally intensive meso-scale simulation of woven composites, this article presents Recurrent Neural Network (RNN) models. Leveraging the power of transfer learning, the initialization challenges and sparse data issues inherent in cyclic shear strain loads are addressed in the RNN models. A mean-field model generates a comprehensive data set representing elasto-plastic behavior. In simulations, arbitrary six-dimensional strain histories are used to predict stresses under random walking as the source task and cyclic loading conditions as the target task. Incorporating sub-scale properties enhances RNN versatility. In order to achieve accurate predictions, the model uses a grid search method to tune network architecture and hyper-parameter configurations. The results of this study demonstrate that transfer learning can be used to effectively adapt the RNN to varying strain conditions, which establishes its potential as a useful tool for modeling path-dependent responses in woven composites.

This article proposes a highly accurate and conservative method for hyperbolic systems using the finite volume approach. This innovative scheme constructs the intermediate states at the interfaces of the control volumes using the method of characteristics. The approach is simple to implement, generates entropic solutions, and avoids solving Riemann problems. A diffusion control parameter is introduced to increase the accuracy of the scheme. Numerical examples are presented for the Euler equation for an ideal gas. The results demonstrate the method's ability to capture contact discontinuity and shock wave profiles with high accuracy and low cost as well as its robustness.

An enriched hybrid high-order method is designed for the Stokes equations of fluid flow and is fully applicable to generic curved meshes. Minimal regularity requirements of the enrichment spaces are given, and an abstract error analysis of the scheme is provided. The method achieves consistency in the enrichment space and is proven to converge optimally in energy error. The scheme is applied to 2D flow around circular cylinders, for which the local behaviour of the velocity and pressure fields are known. By enriching the local spaces with these solutions, superior numerical results near the submerged cylinders are achieved.

The weak Galerkin (WG) finite element method has shown great potential in solving various type of partial differential equations. In this paper, we propose an arbitrary order locking-free WG method for solving linear elasticity problems, with the aid of an appropriate $H(div)$-conforming displacement reconstruction operator. Optimal order locking-free error estimates in both the $H^1$-norm and the $L^2$-norm are proved, i.e., the error is independent of the $Lam\acute{e}$ constant $\lambda$. Moreover, the term $\lambda\|\nabla\cdot \mathbf{u}\|_k$ does not need to be bounded in order to achieve these estimates. We validate the accuracy and the robustness of the proposed locking-free WG algorithm by numerical experiments.

We present the numerical analysis of a finite element method (FEM) for one-dimensional Dirichlet problems involving the logarithmic Laplacian (the pseudo-differential operator that appears as a first-order expansion of the fractional Laplacian as the exponent $s\to 0^+$). Our analysis exhibits new phenomena in this setting; in particular, using recently obtained regularity results, we prove rigorous error estimates and provide a logarithmic order of convergence in the energy norm using suitable \emph{log}-weighted spaces. Numerical evidence suggests that this type of rate cannot be improved. Moreover, we show that the stiffness matrix of logarithmic problems can be obtained as the derivative of the fractional stiffness matrix evaluated at $s=0$. Lastly, we investigate the relationship between the discrete eigenvalue problem and its convergence to the continuous one.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司