亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Monte-Carlo Tree Search (MCTS) methods, such as Upper Confidence Bound applied to Trees (UCT), are instrumental to automated planning techniques. However, UCT can be slow to explore an optimal action when it initially appears inferior to other actions. Maximum ENtropy Tree-Search (MENTS) incorporates the maximum entropy principle into an MCTS approach, utilising Boltzmann policies to sample actions, naturally encouraging more exploration. In this paper, we highlight a major limitation of MENTS: optimal actions for the maximum entropy objective do not necessarily correspond to optimal actions for the original objective. We introduce two algorithms, Boltzmann Tree Search (BTS) and Decaying ENtropy Tree-Search (DENTS), that address these limitations and preserve the benefits of Boltzmann policies, such as allowing actions to be sampled faster by using the Alias method. Our empirical analysis shows that our algorithms show consistent high performance across several benchmark domains, including the game of Go.

相關內容

Lexicographic Ranking SuperMartingale (LexRSM) is a probabilistic extension of Lexicographic Ranking Function (LexRF), which is a widely accepted technique for verifying program termination. In this paper, we are the first to propose sound probabilistic extensions of LexRF with a weaker non-negativity condition, called single-component (SC) non-negativity. It is known that such an extension, if it exists, will be nontrivial due to the intricacies of the probabilistic circumstances. Toward the goal, we first devise the notion of fixability, which offers a systematic approach for analyzing the soundness of possibly negative LexRSM. This notion yields a desired extension of LexRF that is sound for general stochastic processes. We next propose another extension, called Lazy LexRSM, toward the application to automated verification; it is sound over probabilistic programs with linear arithmetics, while its subclass is amenable to automated synthesis via linear programming. We finally propose a LexRSM synthesis algorithm for this subclass, and perform experiments.

Deep biasing (DB) improves the performance of end-to-end automatic speech recognition (E2E-ASR) for rare words or contextual phrases using a bias list. However, most existing methods treat bias phrases as sequences of subwords in a predefined static vocabulary, which can result in ineffective learning of the dependencies between subwords. More advanced techniques address this problem by incorporating additional text data, which increases the overall workload. This paper proposes a dynamic vocabulary where phrase-level bias tokens can be added during the inference phase. Each bias token represents an entire bias phrase within a single token, thereby eliminating the need to learn the dependencies between the subwords within the bias phrases. This method can be applied to various architectures because it only extends the embedding and output layers in common E2E-ASR architectures. Experimental results demonstrate that the proposed method improves the performance of bias phrases on English and Japanese datasets.

The existing methods for Remote Sensing Image Change Captioning (RSICC) perform well in simple scenes but exhibit poorer performance in complex scenes. This limitation is primarily attributed to the model's constrained visual ability to distinguish and locate changes. Acknowledging the inherent correlation between change detection (CD) and RSICC tasks, we believe pixel-level CD is significant for describing the differences between images through language. Regrettably, the current RSICC dataset lacks readily available pixel-level CD labels. To address this deficiency, we leverage a model trained on existing CD datasets to derive CD pseudo-labels. We propose an innovative network with an auxiliary CD branch, supervised by pseudo-labels. Furthermore, a semantic fusion augment (SFA) module is proposed to fuse the feature information extracted by the CD branch, thereby facilitating the nuanced description of changes. Experiments demonstrate that our method achieves state-of-the-art performance and validate that learning pixel-level CD pseudo-labels significantly contributes to change captioning. Our code will be available at: //github.com/Chen-Yang-Liu/Pix4Cap

Coded caching scheme originally proposed by Maddah-Ali and Niesen (MN) considered a broadcast network consisting of a single server connected to a set of users each having a cache memory. Motivated by practical scenarios, Karamchandani \textit{et al.} in [16] proposed a coded caching scheme for a two-layer hierarchical network consisting of a single server connected to multiple mirror sites and each mirror site connected to a distinct set of users, in which both mirror sites and users having cache memories. Low subpacketization level coded caching schemes are desirable for practical implementations. Placement delivery array (PDA) was proposed as a tool to design coded caching schemes with reduced subpacketization level by Yan \textit{et al.} in [4]. Schemes with reduced subpacketization levels are studied extensively in the literature for single-layer networks. Kong \textit{et al.} in [17] proposed a structure called hierarchical placement delivery arrays (HPDA), which characterizes a hierarchical coded caching system and also proposed a class of HPDAs that gives low subpacketization level schemes by using two PDAs. Low subpacketization level hierarchical schemes using combinatorial $t$-designs is proposed in [20]. Apart from that there is no other existing work that discusses the subpacketization problem in a hierarchical network. This paper proposes a class of HPDA construction that gives low subpacketization level hierarchical coded caching schemes, by first constructing a new class of PDAs. Compared with the existing schemes, in cases where the system parameters and subpacketization level are the same, the proposed hierarchical scheme has a better coding delay. Further, the new class of PDAs constructed either subsumes several known PDA constructions or achieves better transmission load for the same system parameters.

The advent of 3D Gaussian Splatting (3DGS) has revolutionized 3D editing, offering efficient, high-fidelity rendering and enabling precise local manipulations. Currently, diffusion-based 2D editing models are harnessed to modify multi-view rendered images, which then guide the editing of 3DGS models. However, this approach faces a critical issue of multi-view inconsistency, where the guidance images exhibit significant discrepancies across views, leading to mode collapse and visual artifacts of 3DGS. To this end, we introduce View-consistent Editing (VcEdit), a novel framework that seamlessly incorporates 3DGS into image editing processes, ensuring multi-view consistency in edited guidance images and effectively mitigating mode collapse issues. VcEdit employs two innovative consistency modules: the Cross-attention Consistency Module and the Editing Consistency Module, both designed to reduce inconsistencies in edited images. By incorporating these consistency modules into an iterative pattern, VcEdit proficiently resolves the issue of multi-view inconsistency, facilitating high-quality 3DGS editing across a diverse range of scenes. Further code and video results are re- leased at //yuxuanw.me/vcedit/.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Label Propagation (LPA) and Graph Convolutional Neural Networks (GCN) are both message passing algorithms on graphs. Both solve the task of node classification but LPA propagates node label information across the edges of the graph, while GCN propagates and transforms node feature information. However, while conceptually similar, theoretical relation between LPA and GCN has not yet been investigated. Here we study the relationship between LPA and GCN in terms of two aspects: (1) feature/label smoothing where we analyze how the feature/label of one node is spread over its neighbors; And, (2) feature/label influence of how much the initial feature/label of one node influences the final feature/label of another node. Based on our theoretical analysis, we propose an end-to-end model that unifies GCN and LPA for node classification. In our unified model, edge weights are learnable, and the LPA serves as regularization to assist the GCN in learning proper edge weights that lead to improved classification performance. Our model can also be seen as learning attention weights based on node labels, which is more task-oriented than existing feature-based attention models. In a number of experiments on real-world graphs, our model shows superiority over state-of-the-art GCN-based methods in terms of node classification accuracy.

Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

北京阿比特科技有限公司