亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the study of the brain, there is a hypothesis that sparse coding is realized in information representation of external stimuli, which is experimentally confirmed for visual stimulus recently. However, unlike the specific functional region in the brain, sparse coding in information processing in the whole brain has not been clarified sufficiently. In this study, we investigate the validity of sparse coding in the whole human brain by applying various matrix factorization methods to functional magnetic resonance imaging data of neural activities in the whole human brain. The result suggests sparse coding hypothesis in information representation in the whole human brain, because extracted features from sparse MF method, SparsePCA or MOD under high sparsity setting, or approximate sparse MF method, FastICA, can classify external visual stimuli more accurately than non-sparse MF method or sparse MF method under low sparsity setting.

相關內容

這種方法被稱為Sparse Coding。通俗的說,就是將一個信號表示為一組基的線性組合,而且要求只需要較少的幾個基就可以將信號表示出來

Spatially distributed functional data are prevalent in many statistical applications such as meteorology, energy forecasting, census data, disease mapping, and neurological studies. Given their complex and high-dimensional nature, functional data often require dimension reduction methods to extract meaningful information. Inverse regression is one such approach that has become very popular in the past two decades. We study the inverse regression in the framework of functional data observed at irregularly positioned spatial sites. The functional predictor is the sum of a spatially dependent functional effect and a spatially independent functional nugget effect, while the relation between the scalar response and the functional predictor is modeled using the inverse regression framework. For estimation, we consider local linear smoothing with a general weighting scheme, which includes as special cases the schemes under which equal weights are assigned to each observation or to each subject. This framework enables us to present the asymptotic results for different types of sampling plans over time such as non-dense, dense, and ultra-dense. We discuss the domain-expanding infill (DEI) framework for spatial asymptotics, which is a mix of the traditional expanding domain and infill frameworks. The DEI framework overcomes the limitations of traditional spatial asymptotics in the existing literature. Under this unified framework, we develop asymptotic theory and identify conditions that are necessary for the estimated eigen-directions to achieve optimal rates of convergence. Our asymptotic results include pointwise and $L_2$ convergence rates. Simulation studies using synthetic data and an application to a real-world dataset confirm the effectiveness of our methods.

We consider the empirical versions of geometric quantile and halfspace depth, and study their extremal behaviour as a function of the sample size. The objective of this study is to establish connection between the rates of convergence and tail behaviour of the corresponding underlying distributions. The intricate interplay between the sample size and the parameter driving the extremal behaviour forms the main result of this analysis. In the process, we also fill certain gaps in the understanding of population versions of geometric quantile and halfspace depth.

The Immersed Boundary (IB) method of Peskin (J. Comput. Phys., 1977) is useful for problems involving fluid-structure interactions or complex geometries. By making use of a regular Cartesian grid that is independent of the geometry, the IB framework yields a robust numerical scheme that can efficiently handle immersed deformable structures. Additionally, the IB method has been adapted to problems with prescribed motion and other PDEs with given boundary data. IB methods for these problems traditionally involve penalty forces which only approximately satisfy boundary conditions, or they are formulated as constraint problems. In the latter approach, one must find the unknown forces by solving an equation that corresponds to a poorly conditioned first-kind integral equation. This operation can require a large number of iterations of a Krylov method, and since a time-dependent problem requires this solve at each time step, this method can be prohibitively inefficient without preconditioning. In this work, we introduce a new, well-conditioned IB formulation for boundary value problems, which we call the Immersed Boundary Double Layer (IBDL) method. We present the method as it applies to Poisson and Helmholtz problems to demonstrate its efficiency over the original constraint method. In this double layer formulation, the equation for the unknown boundary distribution corresponds to a well-conditioned second-kind integral equation that can be solved efficiently with a small number of iterations of a Krylov method. Furthermore, the iteration count is independent of both the mesh size and immersed boundary point spacing. The method converges away from the boundary, and when combined with a local interpolation, it converges in the entire PDE domain. Additionally, while the original constraint method applies only to Dirichlet problems, the IBDL formulation can also be used for Neumann conditions.

We consider the problem of learning support vector machines robust to uncertainty. It has been established in the literature that typical loss functions, including the hinge loss, are sensible to data perturbations and outliers, thus performing poorly in the setting considered. In contrast, using the 0-1 loss or a suitable non-convex approximation results in robust estimators, at the expense of large computational costs. In this paper we use mixed-integer optimization techniques to derive a new loss function that better approximates the 0-1 loss compared with existing alternatives, while preserving the convexity of the learning problem. In our computational results, we show that the proposed estimator is competitive with the standard SVMs with the hinge loss in outlier-free regimes and better in the presence of outliers.

This study examines whether income distribution in Thailand has a property of scale invariance or self-similarity across years. By using the data on income shares by quintile and by decile of Thailand from 1988 to 2021, the results from 306-pairwise Kolmogorov-Smirnov tests indicate that income distribution in Thailand is statistically scale-invariant or self-similar across years with p-values ranging between 0.988 and 1.000. Based on these empirical findings, this study would like to propose that, in order to change income distribution in Thailand whose pattern had persisted for over three decades, the change itself cannot be gradual but has to be like a phase transition of substance in physics.

Neural operators (NO) are discretization invariant deep learning methods with functional output and can approximate any continuous operator. NO have demonstrated the superiority of solving partial differential equations (PDEs) over other deep learning methods. However, the spatial domain of its input function needs to be identical to its output, which limits its applicability. For instance, the widely used Fourier neural operator (FNO) fails to approximate the operator that maps the boundary condition to the PDE solution. To address this issue, we propose a novel framework called resolution-invariant deep operator (RDO) that decouples the spatial domain of the input and output. RDO is motivated by the Deep operator network (DeepONet) and it does not require retraining the network when the input/output is changed compared with DeepONet. RDO takes functional input and its output is also functional so that it keeps the resolution invariant property of NO. It can also resolve PDEs with complex geometries whereas NO fail. Various numerical experiments demonstrate the advantage of our method over DeepONet and FNO.

This paper develops a flexible and computationally efficient multivariate volatility model, which allows for dynamic conditional correlations and volatility spillover effects among financial assets. The new model has desirable properties such as identifiability and computational tractability for many assets. A sufficient condition of the strict stationarity is derived for the new process. Two quasi-maximum likelihood estimation methods are proposed for the new model with and without low-rank constraints on the coefficient matrices respectively, and the asymptotic properties for both estimators are established. Moreover, a Bayesian information criterion with selection consistency is developed for order selection, and the testing for volatility spillover effects is carefully discussed. The finite sample performance of the proposed methods is evaluated in simulation studies for small and moderate dimensions. The usefulness of the new model and its inference tools is illustrated by two empirical examples for 5 stock markets and 17 industry portfolios, respectively.

Revealing hidden dynamics from the stochastic data is a challenging problem as randomness takes part in the evolution of the data. The problem becomes exceedingly complex when the trajectories of the stochastic data are absent in many scenarios. Here we present an approach to effectively modeling the dynamics of the stochastic data without trajectories based on the weak form of the Fokker-Planck (FP) equation, which governs the evolution of the density function in the Brownian process. Taking the collocations of Gaussian functions as the test functions in the weak form of the FP equation, we transfer the derivatives to the Gaussian functions and thus approximate the weak form by the expectational sum of the data. With a dictionary representation of the unknown terms, a linear system is built and then solved by the regression, revealing the unknown dynamics of the data. Hence, we name the method with the Weak Collocation Regression (WCR) method for its three key components: weak form, collocation of Gaussian kernels, and regression. The numerical experiments show that our method is flexible and fast, which reveals the dynamics within seconds in multi-dimensional problems and can be easily extended to high-dimensional data such as 20 dimensions. WCR can also correctly identify the hidden dynamics of the complex tasks with variable-dependent diffusion and coupled drift, and the performance is robust, achieving high accuracy in the case with noise added.

Numerical solutions for flows in partially saturated porous media pose challenges related to the non-linearity and elliptic-parabolic degeneracy of the governing Richards' equation. Iterative methods are therefore required to manage the complexity of the flow problem. Norms of successive corrections in the iterative procedure form sequences of positive numbers. Definitions of computational orders of convergence and theoretical results for abstract convergent sequences can thus be used to evaluate and compare different iterative methods. We analyze in this frame Newton's and $L$-scheme methods for an implicit finite element method (FEM) and the $L$-scheme for an explicit finite difference method (FDM). We also investigate the effect of the Anderson Acceleration (AA) on both the implicit and the explicit $L$-schemes. Considering a two-dimensional test problem, we found that the AA halves the number of iterations and renders the convergence of the FEM scheme two times faster. As for the FDM approach, AA does not reduce the number of iterations and even increases the computational effort. Instead, being explicit, the FDM $L$-scheme without AA is faster and as accurate as the FEM $L$-scheme with AA.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司