亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The dynamic vehicle routing problem with time windows (DVRPTW) is a generalization of the classical VRPTW to an online setting, where customer data arrives in batches and real-time routing solutions are required. In this paper we adapt the Hybrid Genetic Search (HGS) algorithm, a successful heuristic for VRPTW, to the dynamic variant. We discuss the affected components of the HGS algorithm including giant-tour representation, cost computation, initial population, crossover, and local search. Our approach modifies these components for DVRPTW, attempting to balance solution quality and constraints on future customer arrivals. To this end, we devise methods for comparing different-sized solutions, normalizing costs, and accounting for future epochs that do not require any prior training. Despite this limitation, computational results on data from the EURO meets NeurIPS Vehicle Routing Competition 2022 demonstrate significantly improved solution quality over the best-performing baseline algorithm.

相關內容

Microsoft Windows(視窗操作(zuo)系統)是(shi)微軟公司(si)推出(chu)的(de)一系列(lie)操作(zuo)系統。它(ta)問世于1985年,當時(shi)是(shi)DOS之下的(de)操作(zuo)環境,而后(hou)其后(hou)續(xu)版本作(zuo)逐漸(jian)發(fa)展成為個人電腦和(he)服務器用戶(hu)設計的(de)操作(zuo)系統。

Ground segmentation, as the basic task of unmanned intelligent perception, provides an important support for the target detection task. Unstructured road scenes represented by open-pit mines have irregular boundary lines and uneven road surfaces, which lead to segmentation errors in current ground segmentation methods. To solve this problem, a ground segmentation method based on point cloud map is proposed, which involves three parts: region of interest extraction, point cloud registration and background subtraction. Firstly, establishing boundary semantic associations to obtain regions of interest in unstructured roads. Secondly, establishing the location association between point cloud map and the real-time point cloud of region of interest by semantics information. Thirdly, establishing a background model based on Gaussian distribution according to location association, and segments the ground in real-time point cloud by the background substraction method. Experimental results show that the correct segmentation rate of ground points is 99.95%, and the running time is 26ms. Compared with state of the art ground segmentation algorithm Patchwork++, the average accuracy of ground point segmentation is increased by 7.43%, and the running time is increased by 17ms. Furthermore, the proposed method is practically applied to unstructured road scenarios represented by open pit mines.

We present a novel approach to address the challenge of generalization in offline reinforcement learning (RL), where the agent learns from a fixed dataset without any additional interaction with the environment. Specifically, we aim to improve the agent's ability to generalize to out-of-distribution goals. To achieve this, we propose to learn a dynamics model and check if it is equivariant with respect to a fixed type of transformation, namely translations in the state space. We then use an entropy regularizer to increase the equivariant set and augment the dataset with the resulting transformed samples. Finally, we learn a new policy offline based on the augmented dataset, with an off-the-shelf offline RL algorithm. Our experimental results demonstrate that our approach can greatly improve the test performance of the policy on the considered environments.

With the rapid development of distributed energy resources, increasing number of residential and commercial users have been switched from pure electricity consumers to prosumers that can both consume and produce energy. To properly manage these emerging prosumers, a peer-to-peer electricity market has been explored and extensively studied. In such an electricity market, each prosumer trades energy directly with other prosumers, posing a serious challenge to the scalability of the market. Therefore, a bilateral energy trading mechanism with good scalability is proposed for electricity markets with numerous prosumers in this paper. First, the multi-bilateral economic dispatch problem that maximizes the social welfare is formulated, taking into account product differentiation and network constraints. Then, an energy trading mechanism is devised to improve the scalability from two aspects: (i) an accelerated distributed clearing algorithm with less exchanged information and faster convergence rate. (ii) a novel selection strategy to reduce the amount of computation and communication per prosumer. Finally, the convergence proof of the proposed accelerated algorithm is given, and the proposed selection strategy is illustrated through a Monte Carlo simulation experiment.

Simultaneous confidence bands (SCBs) for percentiles in linear regression are valuable tools with many applications. In this paper, we propose a novel criterion for comparing SCBs for percentiles, termed the Minimum Area Confidence Set (MACS) criterion. This criterion utilizes the area of the confidence set for the pivotal quantities, which are generated from the confidence set of the unknown parameters. Subsequently, we employ the MACS criterion to construct exact SCBs over any finite covariate intervals and to compare multiple SCBs of different forms. This approach can be used to determine the optimal SCBs. It is discovered that the area of the confidence set for the pivotal quantities of an asymmetric SCB is uniformly and can be very substantially smaller than that of the corresponding symmetric SCB. Therefore, under the MACS criterion, exact asymmetric SCBs should always be preferred. Furthermore, a new computationally efficient method is proposed to calculate the critical constants of exact SCBs for percentiles. A real data example on drug stability study is provided for illustration.

Federated Learning is emerging as a privacy-preserving model training approach in distributed edge applications. As such, most edge deployments are heterogeneous in nature i.e., their sensing capabilities and environments vary across deployments. This edge heterogeneity violates the independence and identical distribution (IID) property of local data across clients and produces biased global models i.e. models that contribute to unfair decision-making and discrimination against a particular community or a group. Existing bias mitigation techniques only focus on bias generated from label heterogeneity in non-IID data without accounting for domain variations due to feature heterogeneity and do not address global group-fairness property. Our work proposes a group-fair FL framework that minimizes group-bias while preserving privacy and without resource utilization overhead. Our main idea is to leverage average conditional probabilities to compute a cross-domain group \textit{importance weights} derived from heterogeneous training data to optimize the performance of the worst-performing group using a modified multiplicative weights update method. Additionally, we propose regularization techniques to minimize the difference between the worst and best-performing groups while making sure through our thresholding mechanism to strike a balance between bias reduction and group performance degradation. Our evaluation of human emotion recognition and image classification benchmarks assesses the fair decision-making of our framework in real-world heterogeneous settings.

The main premise of federated learning (FL) is that machine learning model updates are computed locally to preserve user data privacy. This approach avoids by design user data to ever leave the perimeter of their device. Once the updates aggregated, the model is broadcast to all nodes in the federation. However, without proper defenses, compromised nodes can probe the model inside their local memory in search for adversarial examples, which can lead to dangerous real-world scenarios. For instance, in image-based applications, adversarial examples consist of images slightly perturbed to the human eye getting misclassified by the local model. These adversarial images are then later presented to a victim node's counterpart model to replay the attack. Typical examples harness dissemination strategies such as altered traffic signs (patch attacks) no longer recognized by autonomous vehicles or seemingly unaltered samples that poison the local dataset of the FL scheme to undermine its robustness. Pelta is a novel shielding mechanism leveraging Trusted Execution Environments (TEEs) that reduce the ability of attackers to craft adversarial samples. Pelta masks inside the TEE the first part of the back-propagation chain rule, typically exploited by attackers to craft the malicious samples. We evaluate Pelta on state-of-the-art accurate models using three well-established datasets: CIFAR-10, CIFAR-100 and ImageNet. We show the effectiveness of Pelta in mitigating six white-box state-of-the-art adversarial attacks, such as Projected Gradient Descent, Momentum Iterative Method, Auto Projected Gradient Descent, the Carlini & Wagner attack. In particular, Pelta constitutes the first attempt at defending an ensemble model against the Self-Attention Gradient attack to the best of our knowledge. Our code is available to the research community at //github.com/queyrusi/Pelta.

Imitation learning enables the synthesis of controllers for complex objectives and highly uncertain plant models. However, methods to provide stability guarantees to imitation learned controllers often rely on large amounts of data and/or known plant models. In this paper, we explore an input-output (IO) stability approach to dissipative imitation learning, which achieves stability with sparse data sets and with little known about the plant model. A closed-loop stable dynamic output feedback controller is learned using expert data, a coarse IO plant model, and a new constraint to enforce dissipativity on the learned controller. While the learning objective is nonconvex, iterative convex overbounding (ICO) and projected gradient descent (PGD) are explored as methods to successfully learn the controller. This new imitation learning method is applied to two unknown plants and compared to traditionally learned dynamic output feedback controller and neural network controller. With little knowledge of the plant model and a small data set, the dissipativity constrained learned controller achieves closed loop stability and successfully mimics the behavior of the expert controller, while other methods often fail to maintain stability and achieve good performance.

We consider the problem of checking the differential privacy of online randomized algorithms that process a stream of inputs and produce outputs corresponding to each input. This paper generalizes an automaton model called DiP automata (See arXiv:2104.14519) to describe such algorithms by allowing multiple real-valued storage variables. A DiP automaton is a parametric automaton whose behavior depends on the privacy budget $\epsilon$. An automaton $A$ will be said to be differentially private if, for some $\mathfrak{D}$, the automaton is $\mathfrak{D}\epsilon$-differentially private for all values of $\epsilon>0$. We identify a precise characterization of the class of all differentially private DiP automata. We show that the problem of determining if a given DiP automaton belongs to this class is PSPACE-complete. Our PSPACE algorithm also computes a value for $\mathfrak{D}$ when the given automaton is differentially private. The algorithm has been implemented, and experiments demonstrating its effectiveness are presented.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

北京阿比特科技有限公司