亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a fast scheme for approximating the Mittag-Leffler function by an efficient sum-of-exponentials (SOE), and apply the scheme to the viscoelastic model of wave propagation with mixed finite element methods for the spatial discretization and the Newmark-beta scheme for the second-order temporal derivative. Compared with traditional L1 scheme for fractional derivative, our fast scheme reduces the memory complexity from $\mathcal O(N_sN) $ to $\mathcal O(N_sN_{exp})$ and the computation complexity from $\mathcal O(N_sN^2)$ to $\mathcal O(N_sN_{exp}N)$, where $N$ denotes the total number of temporal grid points, $N_{exp}$ is the number of exponentials in SOE, and $N_s$ represents the complexity of memory and computation related to the spatial discretization. Numerical experiments are provided to verify the theoretical results.

相關內容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存儲技術會議。 Publisher:USENIX。 SIT:

We consider the problem of identifying jointly the ancestral sequence, the phylogeny and the parameters in models of DNA sequence evolution with insertion and deletion (indel). Under the classical TKF91 model of sequence evolution, we obtained explicit formulas for the root sequence, the pairwise distances of leaf sequences, as well as the scaled rates of indel and substitution in terms of the distribution of the leaf sequences of an arbitrary phylogeny. These explicit formulas not only strengthen existing invertibility results and work for phylogeny that are not necessarily ultrametric, but also lead to new estimators with less assumption compared with the existing literature. Our simulation study demonstrates that these estimators are statistically consistent as the number of independent samples tends to infinity.

Characteristic formulae give a complete logical description of the behaviour of processes modulo some chosen notion of behavioural semantics. They allow one to reduce equivalence or preorder checking to model checking, and are exactly the formulae in the modal logics characterizing classic behavioural equivalences and preorders for which model checking can be reduced to equivalence or preorder checking. This paper studies the complexity of determining whether a formula is characteristic for some finite, loop-free process in each of the logics providing modal characterizations of the simulation-based semantics in van Glabbeek's branching-time spectrum. Since characteristic formulae in each of those logics are exactly the consistent and prime ones, it presents complexity results for the satisfiability and primality problems, and investigates the boundary between modal logics for which those problems can be solved in polynomial time and those for which they become computationally hard. Amongst other contributions, this article also studies the complexity of constructing characteristic formulae in the modal logics characterizing simulation-based semantics, both when such formulae are presented in explicit form and via systems of equations.

We study an architecture for fault-tolerant measurement-based quantum computation (FT-MBQC) over optically-networked trapped-ion modules. The architecture is implemented with a finite number of modules and ions per module, and leverages photonic interactions for generating remote entanglement between modules and local Coulomb interactions for intra-modular entangling gates. We focus on generating the topologically protected Raussendorf-Harrington-Goyal (RHG) lattice cluster state, which is known to be robust against lattice bond failures and qubit noise, with the modules acting as lattice sites. To ensure that the remote entanglement generation rates surpass the bond-failure tolerance threshold of the RHG lattice, we employ spatial and temporal multiplexing. For realistic system timing parameters, we estimate the code cycle time of the RHG lattice and the ion resources required in a bi-layered implementation, where the number of modules matches the number of sites in two lattice layers, and qubits are reinitialized after measurement. For large distances between modules, we incorporate quantum repeaters between sites and analyze the benefits in terms of cumulative resource requirements. Finally, we derive and analyze a qubit noise-tolerance threshold inequality for the RHG lattice generation in the proposed architecture that accounts for noise from various sources. This includes the depolarizing noise arising from the photonically-mediated remote entanglement generation between modules due to finite optical detection efficiency, limited visibility, and the presence of dark clicks, in addition to the noise from imperfect gates and measurements, and memory decoherence with time. Our work thus underscores the hardware and channel threshold requirements to realize distributed FT-MBQC in a leading qubit platform today -- trapped ions.

These last few years, image decomposition algorithms have been proposed to split an image into two parts: the structures and the textures. These algorithms are not adapted to the case of noisy images because the textures are corrupted by noise. In this paper, we propose a new model which decomposes an image into three parts (structures, textures and noise) based on a local regularization scheme. We compare our results with the recent work of Aujol and Chambolle. We finish by giving another model which combines the advantages of the two previous ones.

We address the problem of identifying functional interactions among stochastic neurons with variable-length memory from their spiking activity. The neuronal network is modeled by a stochastic system of interacting point processes with variable-length memory. Each chain describes the activity of a single neuron, indicating whether it spikes at a given time. One neuron's influence on another can be either excitatory or inhibitory. To identify the existence and nature of an interaction between a neuron and its postsynaptic counterpart, we propose a model selection procedure based on the observation of the spike activity of a finite set of neurons over a finite time. The proposed procedure is also based on the maximum likelihood estimator for the synaptic weight matrix of the network neuronal model. In this sense, we prove the consistency of the maximum likelihood estimator followed by a proof of the consistency of the neighborhood interaction estimation procedure. The effectiveness of the proposed model selection procedure is demonstrated using simulated data, which validates the underlying theory. The method is also applied to analyze spike train data recorded from hippocampal neurons in rats during a visual attention task, where a computational model reconstructs the spiking activity and the results reveal interesting and biologically relevant information.

We perform a quantitative assessment of different strategies to compute the contribution due to surface tension in incompressible two-phase flows using a conservative level set (CLS) method. More specifically, we compare classical approaches, such as the direct computation of the curvature from the level set or the Laplace-Beltrami operator, with an evolution equation for the mean curvature recently proposed in literature. We consider the test case of a static bubble, for which an exact solution for the pressure jump across the interface is available, and the test case of an oscillating bubble, showing pros and cons of the different approaches.

The paper addresses the problem of finding a low-rank approximation of a multi-dimensional tensor, $\Phi $, using a subset of its entries. A distinctive aspect of the tensor completion problem explored here is that entries of the $d$-dimensional tensor $\Phi$ are reconstructed via $C$-dimensional slices, where $C < d - 1$. This setup is motivated by, and applied to, the reduced-order modeling of parametric dynamical systems. In such applications, parametric solutions are often reconstructed from space-time slices through sparse sampling over the parameter domain. To address this non-standard completion problem, we introduce a novel low-rank tensor format called the hybrid tensor train. Completion in this format is then incorporated into a Galerkin reduced order model (ROM), specifically an interpolatory tensor-based ROM. We demonstrate the performance of both the completion method and the ROM on several examples of dynamical systems derived from finite element discretizations of parabolic partial differential equations with parameter-dependent coefficients or boundary conditions.

We discuss nonparametric estimation of the trend coefficient in models governed by a stochastic differential equation driven by a multiplicative stochastic volatility.

We propose nodal auxiliary space preconditioners for facet and edge virtual elements of lowest order by deriving discrete regular decompositions on polytopal grids and generalizing the Hiptmair-Xu preconditioner to the virtual element framework. The preconditioner consists of solving a sequence of elliptic problems on the nodal virtual element space, combined with appropriate smoother steps. Under assumed regularity of the mesh, the preconditioned system is proven to have bounded spectral condition number independent of the mesh size and this is verified by numerical experiments on a sequence of polygonal meshes. Moreover, we observe numerically that the preconditioner is robust on meshes containing elements with high aspect ratios.

We derive a higher-order asymptotic expansion of the conditional characteristic function of the increment of an It\^o semimartingale over a shrinking time interval. The spot characteristics of the It\^o semimartingale are allowed to have dynamics of general form. In particular, their paths can be rough, that is, exhibit local behavior like that of a fractional Brownian motion, while at the same time have jumps with arbitrary degree of activity. The expansion result shows the distinct roles played by the different features of the spot characteristics dynamics. As an application of our result, we construct a nonparametric estimator of the Hurst parameter of the diffusive volatility process from portfolios of short-dated options written on an underlying asset.

北京阿比特科技有限公司