亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The class of basic feasible functionals (BFF) is the analog of FP (polynomial time functions) for type-two functionals, that is, functionals that can take (first-order) functions as arguments. BFF can be defined by means of oracle Turing machines of time bounded by a second-order polynomial. On the other hand, higher-order term rewriting provides an elegant formalism for expressing higher-order computation. We address the problem of characterizing the class BFF by higher-order term rewriting. Various kinds of interpretations for first-order term rewriting have been introduced in the literature for proving termination and characterizing (first-order) complexity classes. Here we consider a recently introduced notion of cost-size interpretations for higher-order term rewriting and see definitions as ways of computing functionals. We then prove that the class of functionals represented by higher-order terms admitting a certain kind of cost-size interpretation is exactly BFF.

相關內容

Out-of-distribution detection (OOD) is a crucial technique for deploying machine learning models in the real world to handle the unseen scenarios. In this paper, we first propose a simple yet effective Neural Activation Prior (NAP) for OOD detection. Our neural activation prior is based on a key observation that, for a channel before the global pooling layer of a fully trained neural network, the probability of a few neurons being activated with a large response by an in-distribution (ID) sample is significantly higher than that by an OOD sample. An intuitive explanation is that for a model fully trained on ID dataset, each channel would play a role in detecting a certain pattern in the ID dataset, and a few neurons can be activated with a large response when the pattern is detected in an input sample. Then, a new scoring function based on this prior is proposed to highlight the role of these strongly activated neurons in OOD detection. Our approach is plug-and-play and does not lead to any performance degradation on ID data classification and requires no extra training or statistics from training or external datasets. Notice that previous methods primarily rely on post-global-pooling features of the neural networks, while the within-channel distribution information we leverage would be discarded by the global pooling operator. Consequently, our method is orthogonal to existing approaches and can be effectively combined with them in various applications. Experimental results show that our method achieves the state-of-the-art performance on CIFAR benchmark and ImageNet dataset, which demonstrates the power of the proposed prior. Finally, we extend our method to Transformers and the experimental findings indicate that NAP can also significantly enhance the performance of OOD detection on Transformers, thereby demonstrating the broad applicability of this prior knowledge.

Timed automata are the formal model for real-time systems. Extensions with discrete probabilistic branching have been considered in the literature and successfully applied. Probabilistic timed automata (PTA) do require all branching probabilities and clock constraints to be constants. This report investigates PTA in which this constraint is relaxed: both branching probabilities and clock constraints can be parametric. We formally define this PTA variant and define its semantics by an uncountable parametric Markov Decision Process (pMDP). We show that reachability probabilities in parametric L/U-PTA can be reduced to considering PTA with only parametric branching probabilities. This enables the usage of existing techniques from the literature. Finally, we generalize the symbolic backward and digital clock semantics of PTA to the setting with parametric probabilities and constraints.

The stochastic block model (SBM) is a generalization of the Erd\H{o}s--R\'enyi model of random graphs that describes the interaction of a finite number of distinct communities. In sparse Erd\H{o}s--R\'enyi graphs, it is known that a linear-time algorithm of Karp and Sipser achieves near-optimal matching sizes asymptotically almost surely, giving a law-of-large numbers for the matching sizes of such graphs in terms of solutions to an ODE. We provide an extension of this analysis, identifying broad ranges of stochastic block model parameters for which the Karp--Sipser algorithm achieves near-optimal matching sizes, but demonstrating that it cannot perform optimally on general SBM instances. We also consider the problem of constructing a matching online, in which the vertices of one half of a bipartite stochastic block model arrive one-at-a-time, and must be matched as they arrive. We show that the competitive ratio lower bound of 0.837 found by Mastin and Jaillet for the Erd\H{o}s--R\'enyi case is tight whenever the expected degrees in all communities are equal. We propose several linear-time algorithms for online matching in the general stochastic block model, but prove that despite very good experimental performance, none of these achieve online asymptotic optimality.

Adversarial example (AE) is an attack method for machine learning, which is crafted by adding imperceptible perturbation to the data inducing misclassification. In the current paper, we investigated the upper bound of the probability of successful AEs based on the Gaussian Process (GP) classification. We proved a new upper bound that depends on AE's perturbation norm, the kernel function used in GP, and the distance of the closest pair with different labels in the training dataset. Surprisingly, the upper bound is determined regardless of the distribution of the sample dataset. We showed that our theoretical result was confirmed through the experiment using ImageNet. In addition, we showed that changing the parameters of the kernel function induces a change of the upper bound of the probability of successful AEs.

The computing in the network (COIN) paradigm is a promising solution that leverages unused network resources to perform tasks to meet computation-demanding applications, such as the metaverse. In this vein, we consider the partial computation offloading problem in the metaverse for multiple subtasks in a COIN environment to minimize energy consumption and delay while dynamically adjusting the offloading policy based on the changing computational resource status. The problem is NP-hard, and we transform it into two subproblems: the task-splitting problem (TSP) on the user side and the task-offloading problem (TOP) on the COIN side. We model the TSP as an ordinal potential game and propose a decentralized algorithm to obtain its Nash equilibrium (NE). Then, we model the TOP as a Markov decision process and propose the double deep Q-network (DDQN) to solve for the optimal offloading policy. Unlike the conventional DDQN algorithm, where intelligent agents sample offloading decisions randomly within a certain probability, the COIN agent explores the NE of the TSP and the deep neural network. Finally, the simulation results reveal that the proposed model approach allows the COIN agent to update its policies and make more informed decisions, leading to improved performance over time compared to the traditional baseline

The problem of substructure characteristic modes is reformulated using a scattering matrix-based formulation, generalizing subregion characteristic mode decomposition to arbitrary computational tools. It is shown that the scattering formulation is identical to the classical formulation based on the background Green's function for lossless systems. The scattering formulation, however, opens a variety of new subregion scenarios unavailable within previous formulations, including cases with lumped or wave ports or subregions in circuits. Thanks to its scattering nature, the formulation is solver-agnostic with the possibility to utilize an arbitrary full-wave method.

Video instance segmentation (VIS) is the task that requires simultaneously classifying, segmenting and tracking object instances of interest in video. Recent methods typically develop sophisticated pipelines to tackle this task. Here, we propose a new video instance segmentation framework built upon Transformers, termed VisTR, which views the VIS task as a direct end-to-end parallel sequence decoding/prediction problem. Given a video clip consisting of multiple image frames as input, VisTR outputs the sequence of masks for each instance in the video in order directly. At the core is a new, effective instance sequence matching and segmentation strategy, which supervises and segments instances at the sequence level as a whole. VisTR frames the instance segmentation and tracking in the same perspective of similarity learning, thus considerably simplifying the overall pipeline and is significantly different from existing approaches. Without bells and whistles, VisTR achieves the highest speed among all existing VIS models, and achieves the best result among methods using single model on the YouTube-VIS dataset. For the first time, we demonstrate a much simpler and faster video instance segmentation framework built upon Transformers, achieving competitive accuracy. We hope that VisTR can motivate future research for more video understanding tasks.

It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司