亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Microscopic image segmentation is a challenging task, wherein the objective is to assign semantic labels to each pixel in a given microscopic image. While convolutional neural networks (CNNs) form the foundation of many existing frameworks, they often struggle to explicitly capture long-range dependencies. Although transformers were initially devised to address this issue using self-attention, it has been proven that both local and global features are crucial for addressing diverse challenges in microscopic images, including variations in shape, size, appearance, and target region density. In this paper, we introduce SA2-Net, an attention-guided method that leverages multi-scale feature learning to effectively handle diverse structures within microscopic images. Specifically, we propose scale-aware attention (SA2) module designed to capture inherent variations in scales and shapes of microscopic regions, such as cells, for accurate segmentation. This module incorporates local attention at each level of multi-stage features, as well as global attention across multiple resolutions. Furthermore, we address the issue of blurred region boundaries (e.g., cell boundaries) by introducing a novel upsampling strategy called the Adaptive Up-Attention (AuA) module. This module enhances the discriminative ability for improved localization of microscopic regions using an explicit attention mechanism. Extensive experiments on five challenging datasets demonstrate the benefits of our SA2-Net model. Our source code is publicly available at \url{//github.com/mustansarfiaz/SA2-Net}.

相關內容

Monocular depth estimation is a fundamental computer vision task. Recovering 3D depth from a single image is geometrically ill-posed and requires scene understanding, so it is not surprising that the rise of deep learning has led to a breakthrough. The impressive progress of monocular depth estimators has mirrored the growth in model capacity, from relatively modest CNNs to large Transformer architectures. Still, monocular depth estimators tend to struggle when presented with images with unfamiliar content and layout, since their knowledge of the visual world is restricted by the data seen during training, and challenged by zero-shot generalization to new domains. This motivates us to explore whether the extensive priors captured in recent generative diffusion models can enable better, more generalizable depth estimation. We introduce Marigold, a method for affine-invariant monocular depth estimation that is derived from Stable Diffusion and retains its rich prior knowledge. The estimator can be fine-tuned in a couple of days on a single GPU using only synthetic training data. It delivers state-of-the-art performance across a wide range of datasets, including over 20% performance gains in specific cases. Project page: //marigoldmonodepth.github.io.

The escalating legislative demand for data privacy in facial image dissemination has underscored the significance of image anonymization. Recent advancements in the field surpass traditional pixelation or blur methods, yet they predominantly address regular single images. This leaves clinical image anonymization -- a necessity for illustrating medical interventions -- largely unaddressed. We present VerA, a versatile facial image anonymization that is fit for clinical facial images where: (1) certain semantic areas must be preserved to show medical intervention results, and (2) anonymizing image pairs is crucial for showing before-and-after results. VerA outperforms or is on par with state-of-the-art methods in de-identification and photorealism for regular images. In addition, we validate our results on paired anonymization, and on the anonymization of both single and paired clinical images with extensive quantitative and qualitative evaluation.

Composed image retrieval (CIR) task takes a composed query of image and text, aiming to search relative images for both conditions. Conventional CIR approaches need a training dataset composed of triplets of query image, query text, and target image, which is very expensive to collect. Several recent works have worked on the zero-shot (ZS) CIR paradigm to tackle the issue without using pre-collected triplets. However, the existing ZS-CIR methods show limited backbone scalability and generalizability due to the lack of diversity of the input texts during training. We propose a novel CIR framework, only using language for its training. Our LinCIR (Language-only training for CIR) can be trained only with text datasets by a novel self-supervision named self-masking projection (SMP). We project the text latent embedding to the token embedding space and construct a new text by replacing the keyword tokens of the original text. Then, we let the new and original texts have the same latent embedding vector. With this simple strategy, LinCIR is surprisingly efficient and highly effective; LinCIR with CLIP ViT-G backbone is trained in 48 minutes and shows the best ZS-CIR performances on four different CIR benchmarks, CIRCO, GeneCIS, FashionIQ, and CIRR, even outperforming supervised method on FashionIQ. Code is available at //github.com/navervision/lincir

Recently, Google proposes DDVM which for the first time demonstrates that a general diffusion model for image-to-image translation task works impressively well on optical flow estimation task without any specific designs like RAFT. However, DDVM is still a closed-source model with the expensive and private Palette-style pretraining. In this technical report, we present the first open-source DDVM by reproducing it. We study several design choices and find those important ones. By training on 40k public data with 4 GPUs, our reproduction achieves comparable performance to the closed-source DDVM. The code and model have been released in //github.com/DQiaole/FlowDiffusion_pytorch.

Nowadays, denoising diffusion probabilistic models have been adapted for many image segmentation tasks. However, existing end-to-end models have already demonstrated remarkable capabilities. Rather than using denoising diffusion probabilistic models alone, integrating the abilities of both denoising diffusion probabilistic models and existing end-to-end models can better improve the performance of image segmentation. Based on this, we implicitly introduce residual term into the diffusion process and propose ResEnsemble-DDPM, which seamlessly integrates the diffusion model and the end-to-end model through ensemble learning. The output distributions of these two models are strictly symmetric with respect to the ground truth distribution, allowing us to integrate the two models by reducing the residual term. Experimental results demonstrate that our ResEnsemble-DDPM can further improve the capabilities of existing models. Furthermore, its ensemble learning strategy can be generalized to other downstream tasks in image generation and get strong competitiveness.

Diffusion models have gained prominence in generating data for perception tasks such as image classification and object detection. However, the potential in generating high-quality tracking sequences, a crucial aspect in the field of video perception, has not been fully investigated. To address this gap, we propose TrackDiffusion, a novel architecture designed to generate continuous video sequences from the tracklets. TrackDiffusion represents a significant departure from the traditional layout-to-image (L2I) generation and copy-paste synthesis focusing on static image elements like bounding boxes by empowering image diffusion models to encompass dynamic and continuous tracking trajectories, thereby capturing complex motion nuances and ensuring instance consistency among video frames. For the first time, we demonstrate that the generated video sequences can be utilized for training multi-object tracking (MOT) systems, leading to significant improvement in tracker performance. Experimental results show that our model significantly enhances instance consistency in generated video sequences, leading to improved perceptual metrics. Our approach achieves an improvement of 8.7 in TrackAP and 11.8 in TrackAP$_{50}$ on the YTVIS dataset, underscoring its potential to redefine the standards of video data generation for MOT tasks and beyond.

Modeling large-scale scenes from unconstrained image collections in-the-wild has proven to be a major challenge in computer vision. Existing methods tackling in-the-wild neural rendering operate in a closed-world setting, where knowledge is limited to a scene's captured images within a training set. We propose EvE, which is, to the best of our knowledge, the first method leveraging generative priors to improve in-the-wild scene modeling. We employ pre-trained generative networks to enrich K-Planes representations with extrinsic knowledge. To this end, we define an alternating training procedure to conduct optimization guidance of K-Planes trained on the training set. We carry out extensive experiments and verify the merit of our method on synthetic data as well as real tourism photo collections. EvE enhances rendered scenes with richer details and outperforms the state of the art on the task of novel view synthesis in-the-wild. Our project page can be found at //eve-nvs.github.io .

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

北京阿比特科技有限公司