亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a general abstract framework for database repairing in which the repair notions are defined using formal logic. We differentiate between integrity constraints and the so-called query constraints. The former are used to model consistency and desirable properties of the data (such as functional dependencies and independencies), while the latter relates two database instances according to their answers for the query constraints. The framework also admits a distinction between hard and soft queries, allowing to preserve the answers of a core set of queries as well as defining a distance between instances based on query answers. We exemplify how various notions of repairs from the literature can be modelled in our unifying framework. Furthermore, we initiate a complexity-theoretic analysis of the problems of consistent query answering, repair computation, and existence of repair within the new framework. We present both coNP- and NP-hard cases that illustrate the interplay between computationally hard problems and more flexible repair notions. We show general upper bounds in NP and the second level of the polynomial hierarchy. Finally, we relate the existence of a repair to model checking of existential second-order logic.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · state-of-the-art · MoDELS · Extensibility · 數據集 ·
2024 年 3 月 11 日

High-performing out-of-distribution (OOD) detection, both anomaly and novel class, is an important prerequisite for the practical use of classification models. In this paper, we focus on the species recognition task in images concerned with large databases, a large number of fine-grained hierarchical classes, severe class imbalance, and varying image quality. We propose a framework for combining individual OOD measures into one combined OOD (COOD) measure using a supervised model. The individual measures are several existing state-of-the-art measures and several novel OOD measures developed with novel class detection and hierarchical class structure in mind. COOD was extensively evaluated on three large-scale (500k+ images) biodiversity datasets in the context of anomaly and novel class detection. We show that COOD outperforms individual, including state-of-the-art, OOD measures by a large margin in terms of TPR@1% FPR in the majority of experiments, e.g., improving detecting ImageNet images (OOD) from 54.3% to 85.4% for the iNaturalist 2018 dataset. SHAP (feature contribution) analysis shows that different individual OOD measures are essential for various tasks, indicating that multiple OOD measures and combinations are needed to generalize. Additionally, we show that explicitly considering ID images that are incorrectly classified for the original (species) recognition task is important for constructing high-performing OOD detection methods and for practical applicability. The framework can easily be extended or adapted to other tasks and media modalities.

In decision-making, maxitive functions are used for worst-case and best-case evaluations. Maxitivity gives rise to a rich structure that is well-studied in the context of the pointwise order. In this article, we investigate maxitivity with respect to general preorders and provide a representation theorem for such functionals. The results are illustrated for different stochastic orders in the literature, including the usual stochastic order, the increasing convex/concave order, and the dispersive order.

The family of bent functions is a known class of Boolean functions, which have a great importance in cryptography. The Cayley graph defined on $\mathbb{Z}_{2}^{n}$ by the support of a bent function is a strongly regular graph $srg(v,k\lambda,\mu)$, with $\lambda=\mu$. In this note we list the parameters of such Cayley graphs. Moreover, it is given a condition on $(n,m)$-bent functions $F=(f_1,\ldots,f_m)$, involving the support of their components $f_i$, and their $n$-ary symmetric differences.

Efficient and accurate algorithms are necessary to reconstruct particles in the highly granular detectors anticipated at the High-Luminosity Large Hadron Collider and the Future Circular Collider. We study scalable machine learning models for event reconstruction in electron-positron collisions based on a full detector simulation. Particle-flow reconstruction can be formulated as a supervised learning task using tracks and calorimeter clusters. We compare a graph neural network and kernel-based transformer and demonstrate that we can avoid quadratic operations while achieving realistic reconstruction. We show that hyperparameter tuning significantly improves the performance of the models. The best graph neural network model shows improvement in the jet transverse momentum resolution by up to 50% compared to the rule-based algorithm. The resulting model is portable across Nvidia, AMD and Habana hardware. Accurate and fast machine-learning based reconstruction can significantly improve future measurements at colliders.

Sparse regression and classification estimators that respect group structures have application to an assortment of statistical and machine learning problems, from multitask learning to sparse additive modeling to hierarchical selection. This work introduces structured sparse estimators that combine group subset selection with shrinkage. To accommodate sophisticated structures, our estimators allow for arbitrary overlap between groups. We develop an optimization framework for fitting the nonconvex regularization surface and present finite-sample error bounds for estimation of the regression function. As an application requiring structure, we study sparse semiparametric additive modeling, a procedure that allows the effect of each predictor to be zero, linear, or nonlinear. For this task, the new estimators improve across several metrics on synthetic data compared to alternatives. Finally, we demonstrate their efficacy in modeling supermarket foot traffic and economic recessions using many predictors. These demonstrations suggest sparse semiparametric additive models, fit using the new estimators, are an excellent compromise between fully linear and fully nonparametric alternatives. All of our algorithms are made available in the scalable implementation grpsel.

In many application settings, the data have missing entries which make analysis challenging. An abundant literature addresses missing values in an inferential framework: estimating parameters and their variance from incomplete tables. Here, we consider supervised-learning settings: predicting a target when missing values appear in both training and testing data. We show the consistency of two approaches in prediction. A striking result is that the widely-used method of imputing with a constant, such as the mean prior to learning is consistent when missing values are not informative. This contrasts with inferential settings where mean imputation is pointed at for distorting the distribution of the data. That such a simple approach can be consistent is important in practice. We also show that a predictor suited for complete observations can predict optimally on incomplete data,through multiple imputation.Finally, to compare imputation with learning directly with a model that accounts for missing values, we analyze further decision trees. These can naturally tackle empirical risk minimization with missing values, due to their ability to handle the half-discrete nature of incomplete variables. After comparing theoretically and empirically different missing values strategies in trees, we recommend using the "missing incorporated in attribute" method as it can handle both non-informative and informative missing values.

One of the main challenges for interpreting black-box models is the ability to uniquely decompose square-integrable functions of non-independent random inputs into a sum of functions of every possible subset of variables. However, dealing with dependencies among inputs can be complicated. We propose a novel framework to study this problem, linking three domains of mathematics: probability theory, functional analysis, and combinatorics. We show that, under two reasonable assumptions on the inputs (non-perfect functional dependence and non-degenerate stochastic dependence), it is always possible to decompose such a function uniquely. This generalizes the well-known Hoeffding decomposition. The elements of this decomposition can be expressed using oblique projections and allow for novel interpretability indices for evaluation and variance decomposition purposes. The properties of these novel indices are studied and discussed. This generalization offers a path towards a more precise uncertainty quantification, which can benefit sensitivity analysis and interpretability studies whenever the inputs are dependent. This decomposition is illustrated analytically, and the challenges for adopting these results in practice are discussed.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.

北京阿比特科技有限公司