There is a growing interest in using reinforcement learning (RL) to personalize sequences of treatments in digital health to support users in adopting healthier behaviors. Such sequential decision-making problems involve decisions about when to treat and how to treat based on the user's context (e.g., prior activity level, location, etc.). Online RL is a promising data-driven approach for this problem as it learns based on each user's historical responses and uses that knowledge to personalize these decisions. However, to decide whether the RL algorithm should be included in an ``optimized'' intervention for real-world deployment, we must assess the data evidence indicating that the RL algorithm is actually personalizing the treatments to its users. Due to the stochasticity in the RL algorithm, one may get a false impression that it is learning in certain states and using this learning to provide specific treatments. We use a working definition of personalization and introduce a resampling-based methodology for investigating whether the personalization exhibited by the RL algorithm is an artifact of the RL algorithm stochasticity. We illustrate our methodology with a case study by analyzing the data from a physical activity clinical trial called HeartSteps, which included the use of an online RL algorithm. We demonstrate how our approach enhances data-driven truth-in-advertising of algorithm personalization both across all users as well as within specific users in the study.
Large language models (LLMs) encode a vast amount of world knowledge acquired from massive text datasets. Recent studies have demonstrated that LLMs can assist an algorithm agent in solving complex sequential decision making tasks in embodied environments by providing high-level instructions. However, interacting with LLMs can be time-consuming, as in many practical scenarios, they require a significant amount of storage space that can only be deployed on remote cloud server nodes. Additionally, using commercial LLMs can be costly since they may charge based on usage frequency. In this paper, we explore how to enable efficient and cost-effective interactions between the agent and an LLM. We propose a reinforcement learning based mediator model that determines when it is necessary to consult LLMs for high-level instructions to accomplish a target task. Experiments on 4 MiniGrid environments that entail planning sub-goals demonstrate that our method can learn to solve target tasks with only a few necessary interactions with an LLM, significantly reducing interaction costs in testing environments, compared with baseline methods. Experimental results also suggest that by learning a mediator model to interact with the LLM, the agent's performance becomes more robust against both exploratory and stochastic environments.
A main research goal in various studies is to use an observational data set and provide a new set of counterfactual guidelines that can yield causal improvements. Dynamic Treatment Regimes (DTRs) are widely studied to formalize this process. However, available methods in finding optimal DTRs often rely on assumptions that are violated in real-world applications (e.g., medical decision-making or public policy), especially when (a) the existence of unobserved confounders cannot be ignored, and (b) the unobserved confounders are time-varying (e.g., affected by previous actions). When such assumptions are violated, one often faces ambiguity regarding the underlying causal model. This ambiguity is inevitable, since the dynamics of unobserved confounders and their causal impact on the observed part of the data cannot be understood from the observed data. Motivated by a case study of finding superior treatment regimes for patients who underwent transplantation in our partner hospital and faced a medical condition known as New Onset Diabetes After Transplantation (NODAT), we extend DTRs to a new class termed Ambiguous Dynamic Treatment Regimes (ADTRs), in which the causal impact of treatment regimes is evaluated based on a "cloud" of causal models. We then connect ADTRs to Ambiguous Partially Observable Mark Decision Processes (APOMDPs) and develop Reinforcement Learning methods, which enable using the observed data to efficiently learn an optimal treatment regime. We establish theoretical results for these learning methods, including (weak) consistency and asymptotic normality. We further evaluate the performance of these learning methods both in our case study and in simulation experiments.
We consider model selection for sequential decision making in stochastic environments with bandit feedback, where a meta-learner has at its disposal a pool of base learners, and decides on the fly which action to take based on the policies recommended by each base learner. Model selection is performed by regret balancing but, unlike the recent literature on this subject, we do not assume any prior knowledge about the base learners like candidate regret guarantees; instead, we uncover these quantities in a data-driven manner. The meta-learner is therefore able to leverage the realized regret incurred by each base learner for the learning environment at hand (as opposed to the expected regret), and single out the best such regret. We design two model selection algorithms operating with this more ambitious notion of regret and, besides proving model selection guarantees via regret balancing, we experimentally demonstrate the compelling practical benefits of dealing with actual regrets instead of candidate regret bounds.
Noise plagues many numerical datasets, where the recorded values in the data may fail to match the true underlying values due to reasons including: erroneous sensors, data entry/processing mistakes, or imperfect human estimates. Here we consider estimating which data values are incorrect along a numerical column. We present a model-agnostic approach that can utilize any regressor (i.e. statistical or machine learning model) which was fit to predict values in this column based on the other variables in the dataset. By accounting for various uncertainties, our approach distinguishes between genuine anomalies and natural data fluctuations, conditioned on the available information in the dataset. We establish theoretical guarantees for our method and show that other approaches like conformal inference struggle to detect errors. We also contribute a new error detection benchmark involving 5 regression datasets with real-world numerical errors (for which the true values are also known). In this benchmark and additional simulation studies, our method identifies incorrect values with better precision/recall than other approaches.
While Reinforcement Learning ( RL) has made great strides towards solving increasingly complicated problems, many algorithms are still brittle to even slight environmental changes. Contextual Reinforcement Learning (cRL) provides a framework to model such changes in a principled manner, thereby enabling flexible, precise and interpretable task specification and generation. Our goal is to show how the framework of cRL contributes to improving zero-shot generalization in RL through meaningful benchmarks and structured reasoning about generalization tasks. We confirm the insight that optimal behavior in cRL requires context information, as in other related areas of partial observability. To empirically validate this in the cRL framework, we provide various context-extended versions of common RL environments. They are part of the first benchmark library, CARL, designed for generalization based on cRL extensions of popular benchmarks, which we propose as a testbed to further study general agents. We show that in the contextual setting, even simple RL environments become challenging - and that naive solutions are not enough to generalize across complex context spaces.
The aim of this study is to determine the perceived stress levels of 150 individuals and analyze the responses given to adapted questions in Turkish using machine learning. The test consists of 14 questions, each scored on a scale of 0 to 4, resulting in a total score range of 0-56. Out of these questions, 7 are formulated in a negative context and scored accordingly, while the remaining 7 are formulated in a positive context and scored in reverse. The test is also designed to identify two sub-factors: perceived self-efficacy and stress/discomfort perception. The main objectives of this research are to demonstrate that test questions may not have equal importance using artificial intelligence techniques, reveal which questions exhibit variations in the society using machine learning, and ultimately demonstrate the existence of distinct patterns observed psychologically. This study provides a different perspective from the existing psychology literature by repeating the test through machine learning. Additionally, it questions the accuracy of the scale used to interpret the results of the perceived stress test and emphasizes the importance of considering differences in the prioritization of test questions. The findings of this study offer new insights into coping strategies and therapeutic approaches in dealing with stress. Source code: //github.com/toygarr/ppl-r-stressed
While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.
The advent of artificial intelligence technology paved the way of many researches to be made within air combat sector. Academicians and many other researchers did a research on a prominent research direction called autonomous maneuver decision of UAV. Elaborative researches produced some outcomes, but decisions that include Reinforcement Learning(RL) came out to be more efficient. There have been many researches and experiments done to make an agent reach its target in an optimal way, most prominent are Genetic Algorithm(GA) , A star, RRT and other various optimization techniques have been used. But Reinforcement Learning is the well known one for its success. In DARPHA Alpha Dogfight Trials, reinforcement learning prevailed against a real veteran F16 human pilot who was trained by Boeing. This successor model was developed by Heron Systems. After this accomplishment, reinforcement learning bring tremendous attention on itself. In this research we aimed our UAV which has a dubin vehicle dynamic property to move to the target in two dimensional space in an optimal path using Twin Delayed Deep Deterministic Policy Gradients (TD3) and used in experience replay Hindsight Experience Replay(HER).We did tests on two different environments and used simulations.
The rapid changes in the finance industry due to the increasing amount of data have revolutionized the techniques on data processing and data analysis and brought new theoretical and computational challenges. In contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that heavily reply on model assumptions, new developments from reinforcement learning (RL) are able to make full use of the large amount of financial data with fewer model assumptions and to improve decisions in complex financial environments. This survey paper aims to review the recent developments and use of RL approaches in finance. We give an introduction to Markov decision processes, which is the setting for many of the commonly used RL approaches. Various algorithms are then introduced with a focus on value and policy based methods that do not require any model assumptions. Connections are made with neural networks to extend the framework to encompass deep RL algorithms. Our survey concludes by discussing the application of these RL algorithms in a variety of decision-making problems in finance, including optimal execution, portfolio optimization, option pricing and hedging, market making, smart order routing, and robo-advising.
This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.