亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we study min-max optimization problems on Riemannian manifolds. We introduce a Riemannian Hamiltonian function, minimization of which serves as a proxy for solving the original min-max problems. Under the Riemannian Polyak--{\L}ojasiewicz condition on the Hamiltonian function, its minimizer corresponds to the desired min-max saddle point. We also provide cases where this condition is satisfied. For geodesic-bilinear optimization in particular, solving the proxy problem leads to the correct search direction towards global optimality, which becomes challenging with the min-max formulation. To minimize the Hamiltonian function, we propose Riemannian Hamiltonian methods (RHM) and present their convergence analyses. We extend RHM to include consensus regularization and to the stochastic setting. We illustrate the efficacy of the proposed RHM in applications such as subspace robust Wasserstein distance, robust training of neural networks, and generative adversarial networks.

相關內容

This paper introduces and studies the sequential composition and decomposition of propositional logic programs. We show that acyclic programs can be decomposed into single-rule programs and provide a general decomposition result for arbitrary programs. We show that the immediate consequence operator of a program can be represented via composition which allows us to compute its least model without any explicit reference to operators. This bridges the conceptual gap between the syntax and semantics of a propositional logic program in a mathematically satisfactory way.

In high-temperature plasma physics, a strong magnetic field is usually used to confine charged particles. Therefore, for studying the classical mathematical models of the physical problems it needs to consider the effect of external magnetic fields. One of the important model equations in plasma is the Vlasov-Poisson equation with an external magnetic field. This equation usually has multi-scale characteristics and rich physical properties, thus it is very important and meaningful to construct numerical methods that can maintain the physical properties inherited by the original systems over long time. This paper extends the corresponding theory in Cartesian coordinates to general orthogonal curvilinear coordinates, and proves that a Poisson-bracket structure can still be obtained after applying the corresponding finite element discretization. However, the Hamiltonian systems in the new coordinate systems generally cannot be decomposed into sub-systems that can be solved accurately, so it is impossible to use the splitting methods to construct the corresponding geometric integrators. Therefore, this paper proposes a semi-implicit method for strong magnetic fields and analyzes the asymptotic stability of this method.

In this paper, we develop a multiphysics finite element method for solving the quasi-static thermo-poroelasticity model with nonlinear permeability. The model involves multiple physical processes such as deformation, pressure, diffusion and heat transfer. To reveal the multi-physical processes of deformation, diffusion and heat transfer, we reformulate the original model into a fluid coupled problem that is general Stokes equation coupled with two reaction-diffusion equations. Then, we prove the existence and uniqueness of weak solution for the original problem by the $B$-operator technique and by sequence approximation for the reformulated problem. As for the reformulated problem we propose a fully discrete finite element method which can use arbitrary finite element pairs to solve the displacement $\bu$ pressure $\tau $ and variable $\varpi,\varsigma$, and the backward Euler method for time discretization. Finally, we give the stability analysis of the above proposed method, also we prove that the fully discrete multiphysics finite element method has an optimal convergence order. Numerical experiments show that the proposed method can achieve good results under different finite element pairs and are consistent with the theoretical analysis.

This paper presents a new weak Galerkin (WG) method for elliptic interface problems on general curved polygonal partitions. The method's key innovation lies in its ability to transform the complex interface jump condition into a more manageable Dirichlet boundary condition, simplifying the theoretical analysis significantly. The numerical scheme is designed by using locally constructed weak gradient on the curved polygonal partitions. We establish error estimates of optimal order for the numerical approximation in both discrete $H^1$ and $L^2$ norms. Additionally, we present various numerical results that serve to illustrate the robust numerical performance of the proposed WG interface method.

In this paper, the strong formulation of the generalised Navier-Stokes momentum equation is investigated. Specifically, the formulation of shear-stress divergence is investigated, due to its effect on the performance and accuracy of computational methods. It is found that the term may be expressed in two different ways. While the first formulation is commonly used, the alternative derivation is found to be potentially more convenient for direct numerical manipulation. The alternative formulation relocates a part of strain information under the variable-coefficient Laplacian operator, thus making future computational schemes potentially simpler with larger time-step sizes.

In high-temperature plasma physics, a strong magnetic field is usually used to confine charged particles. Therefore, for studying the classical mathematical models of the physical problems it is needed to consider the effect of external magnetic fields. One of the important model equations in plasma is the Vlasov-Poisson equation with an external magnetic field. In this paper, we study the error analysis of Hamiltonian particle methods for this kind of system. The convergence of particle method for Vlasov equation and that of Hamiltonian method for particle equation are provided independently. By combining them, it can be concluded that the numerical solutions converge to the exact particle trajectories.

In this paper, we investigate the behavior of gradient descent algorithms in physics-informed machine learning methods like PINNs, which minimize residuals connected to partial differential equations (PDEs). Our key result is that the difficulty in training these models is closely related to the conditioning of a specific differential operator. This operator, in turn, is associated to the Hermitian square of the differential operator of the underlying PDE. If this operator is ill-conditioned, it results in slow or infeasible training. Therefore, preconditioning this operator is crucial. We employ both rigorous mathematical analysis and empirical evaluations to investigate various strategies, explaining how they better condition this critical operator, and consequently improve training.

In this paper, we propose a multiphysics finite element method for a quasi-static thermo-poroelasticity model with a nonlinear convective transport term. To design some stable numerical methods and reveal the multi-physical processes of deformation, diffusion and heat, we introduce three new variables to reformulate the original model into a fluid coupled problem. Then, we introduce an Newton's iterative algorithm by replacing the convective transport term with $\nabla T^{i}\cdot(\bm{K}\nabla p^{i-1})$, $\nabla T^{i-1}\cdot(\bm{K}\nabla p^{i})$ and $\nabla T^{i-1}\cdot(\bm{K}\nabla p^{i-1})$, and apply the Banach fixed point theorem to prove the convergence of the proposed method. Then, we propose a multiphysics finite element method with Newton's iterative algorithm, which is equivalent to a stabilized method, can effectively overcome the numerical oscillation caused by the nonlinear thermal convection term. Also, we prove that the fully discrete multiphysics finite element method has an optimal convergence order. Finally, we draw conclusions to summarize the main results of this paper.

With observational data alone, causal structure learning is a challenging problem. The task becomes easier when having access to data collected from perturbations of the underlying system, even when the nature of these is unknown. Existing methods either do not allow for the presence of latent variables or assume that these remain unperturbed. However, these assumptions are hard to justify if the nature of the perturbations is unknown. We provide results that enable scoring causal structures in the setting with additive, but unknown interventions. Specifically, we propose a maximum-likelihood estimator in a structural equation model that exploits system-wide invariances to output an equivalence class of causal structures from perturbation data. Furthermore, under certain structural assumptions on the population model, we provide a simple graphical characterization of all the DAGs in the interventional equivalence class. We illustrate the utility of our framework on synthetic data as well as real data involving California reservoirs and protein expressions. The software implementation is available as the Python package \emph{utlvce}.

Permutation pattern-avoidance is a central concept of both enumerative and extremal combinatorics. In this paper we study the effect of permutation pattern-avoidance on the complexity of optimization problems. In the context of the dynamic optimality conjecture (Sleator, Tarjan, STOC 1983), Chalermsook, Goswami, Kozma, Mehlhorn, and Saranurak (FOCS 2015) conjectured that the amortized access cost of an optimal binary search tree (BST) is $O(1)$ whenever the access sequence avoids some fixed pattern. They showed a bound of $2^{\alpha{(n)}^{O(1)}}$, which was recently improved to $2^{\alpha{(n)}(1+o(1))}$ by Chalermsook, Pettie, and Yingchareonthawornchai (2023); here $n$ is the BST size and $\alpha(\cdot)$ the inverse-Ackermann function. In this paper we resolve the conjecture, showing a tight $O(1)$ bound. This indicates a barrier to dynamic optimality: any candidate online BST (e.g., splay trees or greedy trees) must match this optimum, but current analysis techniques only give superconstant bounds. More broadly, we argue that the easiness of pattern-avoiding input is a general phenomenon, not limited to BSTs or even to data structures. To illustrate this, we show that when the input avoids an arbitrary, fixed, a priori unknown pattern, one can efficiently compute a $k$-server solution of $n$ requests from a unit interval, with total cost $n^{O(1/\log k)}$, in contrast to the worst-case $\Theta(n/k)$ bound; and a traveling salesman tour of $n$ points from a unit box, of length $O(\log{n})$, in contrast to the worst-case $\Theta(\sqrt{n})$ bound; similar results hold for the euclidean minimum spanning tree, Steiner tree, and nearest-neighbor graphs. We show both results to be tight. Our techniques build on the Marcus-Tardos proof of the Stanley-Wilf conjecture, and on the recently emerging concept of twin-width; we believe our techniques to be more generally applicable.

北京阿比特科技有限公司