亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Reconfigurable intelligent surfaces (RIS) can improve signal propagation environments by adjusting the phase of the incident signal. However, optimizing the phase shifts jointly with the beamforming vector at the access point is challenging due to the non-convex objective function and constraints. In this study, we propose an algorithm based on weighted minimum mean square error optimization and power iteration to maximize the weighted sum rate (WSR) of a RIS-assisted downlink multi-user multiple-input single-output system. To further improve performance, a model-driven deep learning (DL) approach is designed, where trainable variables and graph neural networks are introduced to accelerate the convergence of the proposed algorithm. We also extend the proposed method to include beamforming with imperfect channel state information and derive a two-timescale stochastic optimization algorithm. Simulation results show that the proposed algorithm outperforms state-of-the-art algorithms in terms of complexity and WSR. Specifically, the model-driven DL approach has a runtime that is approximately 3% of the state-of-the-art algorithm to achieve the same performance. Additionally, the proposed algorithm with 2-bit phase shifters outperforms the compared algorithm with continuous phase shift.

相關內容

Cooperative perception (CP) is a key technology to facilitate consistent and accurate situational awareness for connected and autonomous vehicles (CAVs). To tackle the network resource inefficiency issue in traditional broadcast-based CP, unicast-based CP has been proposed to associate CAV pairs for cooperative perception via vehicle-to-vehicle transmission. In this paper, we investigate unicast-based CP among CAV pairs. With the consideration of dynamic perception workloads and channel conditions due to vehicle mobility and dynamic radio resource availability, we propose an adaptive cooperative perception scheme for CAV pairs in a mixed-traffic autonomous driving scenario with both CAVs and human-driven vehicles. We aim to determine when to switch between cooperative perception and stand-alone perception for each CAV pair, and allocate communication and computing resources to cooperative CAV pairs for maximizing the computing efficiency gain under perception task delay requirements. A model-assisted multi-agent reinforcement learning (MARL) solution is developed, which integrates MARL for an adaptive CAV cooperation decision and an optimization model for communication and computing resource allocation. Simulation results demonstrate the effectiveness of the proposed scheme in achieving high computing efficiency gain, as compared with benchmark schemes.

Multiobjective optimization is a hot topic in the artificial intelligence and operations research communities. The design and development of multiobjective methods is a frequent task for researchers and practitioners. As a result of this vibrant activity, a myriad of techniques have been proposed in the literature to date, demonstrating a significant effectiveness for dealing with situations coming from a wide range of real-world areas. This paper is focused on a multiobjective problem related to optimizing Infrastructure-as-Code deployment configurations. The system implemented for solving this problem has been coined as IaC Optimizer Platform (IOP). Despite the fact that a prototypical version of the IOP has been introduced in the literature before, a deeper analysis focused on the resolution of the problem is needed, in order to determine which is the most appropriate multiobjective method for embedding in the IOP. The main motivation behind the analysis conducted in this work is to enhance the IOP performance as much as possible. This is a crucial aspect of this system, deeming that it will be deployed in a real environment, as it is being developed as part of a H2020 European project. Going deeper, we resort in this paper to nine different evolutionary computation-based multiobjective algorithms. For assessing the quality of the considered solvers, 12 different problem instances have been generated based on real-world settings. Results obtained by each method after 10 independent runs have been compared using Friedman's non-parametric tests. Findings reached from the tests carried out lad to the creation of a multi-algorithm system, capable of applying different techniques according to the user's needs.

Being able to reason about how one's behaviour can affect the behaviour of others is a core skill required of intelligent driving agents. Despite this, the state of the art struggles to meet the need of agents to discover causal links between themselves and others. Observational approaches struggle because of the non-stationarity of causal links in dynamic environments, and the sparsity of causal interactions while requiring the approaches to work in an online fashion. Meanwhile interventional approaches are impractical as a vehicle cannot experiment with its actions on a public road. To counter the issue of non-stationarity we reformulate the problem in terms of extracted events, while the previously mentioned restriction upon interventions can be overcome with the use of counterfactual simulation. We present three variants of the proposed counterfactual causal discovery method and evaluate these against state of the art observational temporal causal discovery methods across 3396 causal scenes extracted from a real world driving dataset. We find that the proposed method significantly outperforms the state of the art on the proposed task quantitatively and can offer additional insights by comparing the outcome of an alternate series of decisions in a way that observational and interventional approaches cannot.

Fluid antenna systems (FASs) can reconfigure their antenna locations freely within a spatially continuous space. To keep favorable antenna positions, the channel state information (CSI) acquisition for FASs is essential. While some techniques have been proposed, most existing FAS channel estimators require several channel assumptions, such as slow variation and angular-domain sparsity. When these assumptions are not reasonable, the model mismatch may lead to unpredictable performance loss. In this paper, we propose the successive Bayesian reconstructor (S-BAR) as a general solution to estimate FAS channels. Unlike model-based estimators, the proposed S-BAR is prior-aided, which builds the experiential kernel for CSI acquisition. Inspired by Bayesian regression, the key idea of S-BAR is to model the FAS channels as a stochastic process, whose uncertainty can be successively eliminated by kernel-based sampling and regression. In this way, the predictive mean of the regressed stochastic process can be viewed as the maximum a posterior (MAP) estimator of FAS channels. Simulation results verify that, in both model-mismatched and model-matched cases, the proposed S-BAR can achieve higher estimation accuracy than the existing schemes.

The optimal power flow (OPF) problem, as a critical component of power system operations, becomes increasingly difficult to solve due to the variability, intermittency, and unpredictability of renewable energy brought to the power system. Although traditional optimization techniques, such as stochastic and robust optimization approaches, could be leveraged to address the OPF problem, in the face of renewable energy uncertainty, i.e., the dynamic coefficients in the optimization model, their effectiveness in dealing with large-scale problems remains limited. As a result, deep learning techniques, such as neural networks, have recently been developed to improve computational efficiency in solving OPF problems with the utilization of data. However, the feasibility and optimality of the solution may not be guaranteed, and the system dynamics cannot be properly addressed as well. In this paper, we propose an optimization model-informed generative adversarial network (MI-GAN) framework to solve OPF under uncertainty. The main contributions are summarized into three aspects: (1) to ensure feasibility and improve optimality of generated solutions, three important layers are proposed: feasibility filter layer, comparison layer, and gradient-guided layer; (2) in the GAN-based framework, an efficient model-informed selector incorporating these three new layers is established; and (3) a new recursive iteration algorithm is also proposed to improve solution optimality and handle the system dynamics. The numerical results on IEEE test systems show that the proposed method is very effective and promising.

Recent advances in generative modeling have led to promising progress on synthesizing 3D human motion from text, with methods that can generate character animations from short prompts and specified durations. However, using a single text prompt as input lacks the fine-grained control needed by animators, such as composing multiple actions and defining precise durations for parts of the motion. To address this, we introduce the new problem of timeline control for text-driven motion synthesis, which provides an intuitive, yet fine-grained, input interface for users. Instead of a single prompt, users can specify a multi-track timeline of multiple prompts organized in temporal intervals that may overlap. This enables specifying the exact timings of each action and composing multiple actions in sequence or at overlapping intervals. To generate composite animations from a multi-track timeline, we propose a new test-time denoising method. This method can be integrated with any pre-trained motion diffusion model to synthesize realistic motions that accurately reflect the timeline. At every step of denoising, our method processes each timeline interval (text prompt) individually, subsequently aggregating the predictions with consideration for the specific body parts engaged in each action. Experimental comparisons and ablations validate that our method produces realistic motions that respect the semantics and timing of given text prompts. Our code and models are publicly available at //mathis.petrovich.fr/stmc.

Self-Sovereign Identity (SSI), as a new and promising identity management paradigm, needs mechanisms that can ease a gradual transition of existing services and developers towards it. Systems that bridge the gap between SSI and established identity and access management have been proposed but still lack adoption. We argue that they are all some combination of too complex, locked into specific ecosystems, have no source code available, or are not sufficiently documented. We propose a comparatively simple system that enables SSI-based sign-ins for services that support the widespread OpenID Connect or OAuth 2.0 protocols. Its handling of claims is highly configurable through a single policy and designed for cross-device authentication flows involving a smartphone identity wallet. For external interfaces, we solely rely on open standards, such as the recent OpenID for Verifiable Credentials standards. We provide our implementation as open-source software intended for prototyping and as a reference. Also, we contribute a detailed technical discussion of our particular sign-in flow. To prove its feasibility, we have successfully tested it with existing software and realistic hardware.

Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司