亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of estimating the optimal transport map between a (fixed) source distribution $P$ and an unknown target distribution $Q$, based on samples from $Q$. The estimation of such optimal transport maps has become increasingly relevant in modern statistical applications, such as generative modeling. At present, estimation rates are only known in a few settings (e.g. when $P$ and $Q$ have densities bounded above and below and when the transport map lies in a H\"older class), which are often not reflected in practice. We present a unified methodology for obtaining rates of estimation of optimal transport maps in general function spaces. Our assumptions are significantly weaker than those appearing in the literature: we require only that the source measure $P$ satisfies a Poincar\'e inequality and that the optimal map be the gradient of a smooth convex function that lies in a space whose metric entropy can be controlled. As a special case, we recover known estimation rates for bounded densities and H\"older transport maps, but also obtain nearly sharp results in many settings not covered by prior work. For example, we provide the first statistical rates of estimation when $P$ is the normal distribution and the transport map is given by an infinite-width shallow neural network.

相關內容

Transport maps can ease the sampling of distributions with non-trivial geometries by transforming them into distributions that are easier to handle. The potential of this approach has risen with the development of Normalizing Flows (NF) which are maps parameterized with deep neural networks trained to push a reference distribution towards a target. NF-enhanced samplers recently proposed blend (Markov chain) Monte Carlo methods with either (i) proposal draws from the flow or (ii) a flow-based reparametrization. In both cases, the quality of the learned transport conditions performance. The present work clarifies for the first time the relative strengths and weaknesses of these two approaches. Our study concludes that multimodal targets can reliability be handled with flow-based proposals up to moderately high dimensions. In contrast, methods relying on reparametrization struggle with multimodality but are more robust otherwise in high-dimensional settings and under poor training. To further illustrate the influence of target-proposal adequacy, we also derive a new quantitative bound for the mixing time of the Independent Metropolis-Hastings sampler.

Suppose we are given access to $n$ independent samples from distribution $\mu$ and we wish to output one of them with the goal of making the output distributed as close as possible to a target distribution $\nu$. In this work we show that the optimal total variation distance as a function of $n$ is given by $\tilde\Theta(\frac{D}{f'(n)})$ over the class of all pairs $\nu,\mu$ with a bounded $f$-divergence $D_f(\nu\|\mu)\leq D$. Previously, this question was studied only for the case when the Radon-Nikodym derivative of $\nu$ with respect to $\mu$ is uniformly bounded. We then consider an application in the seemingly very different field of smoothed online learning, where we show that recent results on the minimax regret and the regret of oracle-efficient algorithms still hold even under relaxed constraints on the adversary (to have bounded $f$-divergence, as opposed to bounded Radon-Nikodym derivative). Finally, we also study efficacy of importance sampling for mean estimates uniform over a function class and compare importance sampling with rejection sampling.

We study a variant of online convex optimization where the player is permitted to switch decisions at most $S$ times in expectation throughout $T$ rounds. Similar problems have been addressed in prior work for the discrete decision set setting, and more recently in the continuous setting but only with an adaptive adversary. In this work, we aim to fill the gap and present computationally efficient algorithms in the more prevalent oblivious setting, establishing a regret bound of $O(T/S)$ for general convex losses and $\widetilde O(T/S^2)$ for strongly convex losses. In addition, for stochastic i.i.d.~losses, we present a simple algorithm that performs $\log T$ switches with only a multiplicative $\log T$ factor overhead in its regret in both the general and strongly convex settings. Finally, we complement our algorithms with lower bounds that match our upper bounds in some of the cases we consider.

We study the problem of learning a hierarchical tree representation of data from labeled samples, taken from an arbitrary (and possibly adversarial) distribution. Consider a collection of data tuples labeled according to their hierarchical structure. The smallest number of such tuples required in order to be able to accurately label subsequent tuples is of interest for data collection in machine learning. We present optimal sample complexity bounds for this problem in several learning settings, including (agnostic) PAC learning and online learning. Our results are based on tight bounds of the Natarajan and Littlestone dimensions of the associated problem. The corresponding tree classifiers can be constructed efficiently in near-linear time.

In this paper, we propose an encoder-decoder neural architecture (called Channelformer) to achieve improved channel estimation for orthogonal frequency-division multiplexing (OFDM) waveforms in downlink scenarios. The self-attention mechanism is employed to achieve input precoding for the input features before processing them in the decoder. In particular, we implement multi-head attention in the encoder and a residual convolutional neural architecture as the decoder, respectively. We also employ a customized weight-level pruning to slim the trained neural network with a fine-tuning process, which reduces the computational complexity significantly to realize a low complexity and low latency solution. This enables reductions of up to 70\% in the parameters, while maintaining an almost identical performance compared with the complete Channelformer. We also propose an effective online training method based on the fifth generation (5G) new radio (NR) configuration for the modern communication systems, which only needs the available information at the receiver for online training. Using industrial standard channel models, the simulations of attention-based solutions show superior estimation performance compared with other candidate neural network methods for channel estimation.

Optimal transport (OT) theory focuses, among all maps $T:\mathbb{R}^d\rightarrow \mathbb{R}^d$ that can morph a probability measure onto another, on those that are the ``thriftiest'', i.e. such that the averaged cost $c(x, T(x))$ between $x$ and its image $T(x)$ be as small as possible. Many computational approaches have been proposed to estimate such Monge maps when $c$ is the $\ell_2^2$ distance, e.g., using entropic maps [Pooladian'22], or neural networks [Makkuva'20, Korotin'20]. We propose a new model for transport maps, built on a family of translation invariant costs $c(x, y):=h(x-y)$, where $h:=\tfrac{1}{2}\|\cdot\|_2^2+\tau$ and $\tau$ is a regularizer. We propose a generalization of the entropic map suitable for $h$, and highlight a surprising link tying it with the Bregman centroids of the divergence $D_h$ generated by $h$, and the proximal operator of $\tau$. We show that choosing a sparsity-inducing norm for $\tau$ results in maps that apply Occam's razor to transport, in the sense that the displacement vectors $\Delta(x):= T(x)-x$ they induce are sparse, with a sparsity pattern that varies depending on $x$. We showcase the ability of our method to estimate meaningful OT maps for high-dimensional single-cell transcription data, in the $34000$-$d$ space of gene counts for cells, without using dimensionality reduction, thus retaining the ability to interpret all displacements at the gene level.

We analyze to what extent final users can infer information about the level of protection of their data when the data obfuscation mechanism is a priori unknown to them (the so-called ''black-box'' scenario). In particular, we delve into the investigation of two notions of local differential privacy (LDP), namely {\epsilon}-LDP and R\'enyi LDP. On one hand, we prove that, without any assumption on the underlying distributions, it is not possible to have an algorithm able to infer the level of data protection with provable guarantees; this result also holds for the central versions of the two notions of DP considered. On the other hand, we demonstrate that, under reasonable assumptions (namely, Lipschitzness of the involved densities on a closed interval), such guarantees exist and can be achieved by a simple histogram-based estimator. We validate our results experimentally and we note that, on a particularly well-behaved distribution (namely, the Laplace noise), our method gives even better results than expected, in the sense that in practice the number of samples needed to achieve the desired confidence is smaller than the theoretical bound, and the estimation of {\epsilon} is more precise than predicted.

The predominant approach in reinforcement learning is to assign credit to actions based on the expected return. However, we show that the return may depend on the policy in a way which could lead to excessive variance in value estimation and slow down learning. Instead, we show that the advantage function can be interpreted as causal effects and shares similar properties with causal representations. Based on this insight, we propose Direct Advantage Estimation (DAE), a novel method that can model the advantage function and estimate it directly from on-policy data while simultaneously minimizing the variance of the return without requiring the (action-)value function. We also relate our method to Temporal Difference methods by showing how value functions can be seamlessly integrated into DAE. The proposed method is easy to implement and can be readily adapted by modern actor-critic methods. We evaluate DAE empirically on three discrete control domains and show that it can outperform generalized advantage estimation (GAE), a strong baseline for advantage estimation, on a majority of the environments when applied to policy optimization.

We study offline multi-agent reinforcement learning (RL) in Markov games, where the goal is to learn an approximate equilibrium -- such as Nash equilibrium and (Coarse) Correlated Equilibrium -- from an offline dataset pre-collected from the game. Existing works consider relatively restricted tabular or linear models and handle each equilibria separately. In this work, we provide the first framework for sample-efficient offline learning in Markov games under general function approximation, handling all 3 equilibria in a unified manner. By using Bellman-consistent pessimism, we obtain interval estimation for policies' returns, and use both the upper and the lower bounds to obtain a relaxation on the gap of a candidate policy, which becomes our optimization objective. Our results generalize prior works and provide several additional insights. Importantly, we require a data coverage condition that improves over the recently proposed "unilateral concentrability". Our condition allows selective coverage of deviation policies that optimally trade-off between their greediness (as approximate best responses) and coverage, and we show scenarios where this leads to significantly better guarantees. As a new connection, we also show how our algorithmic framework can subsume seemingly different solution concepts designed for the special case of two-player zero-sum games.

We introduce a method called MASCOT (Multi-Agent Shape Control with Optimal Transport) to compute optimal control solutions of agents with shape/formation/density constraints. For example, we might want to apply shape constraints on the agents -- perhaps we desire the agents to hold a particular shape along the path, or we want agents to spread out in order to minimize collisions. We might also want a proportion of agents to move to one destination, while the other agents move to another, and to do this in the optimal way, i.e. the source-destination assignments should be optimal. In order to achieve this, we utilize the Earth Mover's Distance from Optimal Transport to distribute the agents into their proper positions so that certain shapes can be satisfied. This cost is both introduced in the terminal cost and in the running cost of the optimal control problem.

北京阿比特科技有限公司