亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A low-autocorrelation binary sequences problem with a high figure of merit factor represents a formidable computational challenge. An efficient parallel computing algorithm is required to reach the new best-known solutions for this problem. Therefore, we developed the $\mathit{sokol}_{\mathit{skew}}$ solver for the skew-symmetric search space. The developed solver takes the advantage of parallel computing on graphics processing units. The solver organized the search process as a sequence of parallel and contiguous self-avoiding walks and achieved a speedup factor of 387 compared with $\mathit{lssOrel}$, its predecessor. The $\mathit{sokol}_{\mathit{skew}}$ solver belongs to stochastic solvers and can not guarantee the optimality of solutions. To mitigate this problem, we established the predictive model of stopping conditions according to the small instances for which the optimal skew-symmetric solutions are known. With its help and 99% probability, the $\mathit{sokol}_{\mathit{skew}}$ solver found all the known and seven new best-known skew-symmetric sequences for odd instances from $L=121$ to $L=223$. For larger instances, the solver can not reach 99% probability within our limitations, but it still found several new best-known binary sequences. We also analyzed the trend of the best merit factor values, and it shows that as sequence size increases, the value of the merit factor also increases, and this trend is flatter for larger instances.

相關內容

The never-ending computational demand from simulations of turbulence makes computational fluid dynamics (CFD) a prime application use case for current and future exascale systems. High-order finite element methods, such as the spectral element method, have been gaining traction as they offer high performance on both multicore CPUs and modern GPU-based accelerators. In this work, we assess how high-fidelity CFD using the spectral element method can exploit the modular supercomputing architecture at scale through domain partitioning, where the computational domain is split between a Booster module powered by GPUs and a Cluster module with conventional CPU nodes. We investigate several different flow cases and computer systems based on the modular supercomputing architecture (MSA). We observe that for our simulations, the communication overhead and load balancing issues incurred by incorporating different computing architectures are seldom worthwhile, especially when I/O is also considered, but when the simulation at hand requires more than the combined global memory on the GPUs, utilizing additional CPUs to increase the available memory can be fruitful. We support our results with a simple performance model to assess when running across modules might be beneficial. As MSA is becoming more widespread and efforts to increase system utilization are growing more important our results give insight into when and how a monolithic application can utilize and spread out to more than one module and obtain a faster time to solution.

Uncertainty estimation (UE), as an effective means of quantifying predictive uncertainty, is crucial for safe and reliable decision-making, especially in high-risk scenarios. Existing UE schemes usually assume that there are completely-labeled samples to support fully-supervised learning. In practice, however, many UE tasks often have no sufficiently-labeled data to use, such as the Multiple Instance Learning (MIL) with only weak instance annotations. To bridge this gap, this paper, for the first time, addresses the weakly-supervised issue of Multi-Instance UE (MIUE) and proposes a new baseline scheme, Multi-Instance Residual Evidential Learning (MIREL). Particularly, at the fine-grained instance UE with only weak supervision, we derive a multi-instance residual operator through the Fundamental Theorem of Symmetric Functions. On this operator derivation, we further propose MIREL to jointly model the high-order predictive distribution at bag and instance levels for MIUE. Extensive experiments empirically demonstrate that our MIREL not only could often make existing MIL networks perform better in MIUE, but also could surpass representative UE methods by large margins, especially in instance-level UE tasks. Our source code is available at //github.com/liupei101/MIREL.

Spatial filtering based on multiple-input multiple-output (MIMO) processing is a powerful method for jammer mitigation. In principle, a MIMO receiver can null the interference of a single-antenna jammer at the cost of only one degree of freedom - if the number of receive antennas is large, communication performance is barely affected. In this paper, we show that the potential for MIMO jammer mitigation based on the digital outputs of finite-resolution analog-to-digital converters (ADCs) is fundamentally worse: Strong jammers will either cause the ADCs to saturate (when the ADCs' quantization range is small) or drown legitimate communication signals in quantization noise (when the ADCs' quantization range is large). We provide a fundamental bound on the mutual information between the quantized receive signal and the legitimate transmit signal. Our bound shows that, for any fixed ADC resolution, the mutual information tends to zero as the jammer power tends to infinity. Our bound also confirms the intuition that for every 6.02 dB increase in jamming power, the ADC resolution must be increased by 1 bit in order to prevent the mutual information from vanishing.

The end-to-end learning pipeline is gradually creating a paradigm shift in the ongoing development of highly autonomous vehicles, largely due to advances in deep learning, the availability of large-scale training datasets, and improvements in integrated sensor devices. However, a lack of interpretability in real-time decisions with contemporary learning methods impedes user trust and attenuates the widespread deployment and commercialization of such vehicles. Moreover, the issue is exacerbated when these cars are involved in or cause traffic accidents. Such drawback raises serious safety concerns from societal and legal perspectives. Consequently, explainability in end-to-end autonomous driving is essential to build trust in vehicular automation. However, the safety and explainability aspects of end-to-end driving have generally been investigated disjointly by researchers in today's state of the art. This survey aims to bridge the gaps between these topics and seeks to answer the following research question: When and how can explanations improve safety of end-to-end autonomous driving? In this regard, we first revisit established safety and state-of-the-art explainability techniques in end-to-end driving. Furthermore, we present three critical case studies and show the pivotal role of explanations in enhancing self-driving safety. Finally, we describe insights from empirical studies and reveal potential value, limitations, and caveats of practical explainable AI methods with respect to their safety assurance in end-to-end autonomous driving.

Multimodal emotion recognition (MER) in practical scenarios is significantly challenged by the presence of missing or incomplete data across different modalities. To overcome these challenges, researchers have aimed to simulate incomplete conditions during the training phase to enhance the system's overall robustness. Traditional methods have often involved discarding data or substituting data segments with zero vectors to approximate these incompletenesses. However, such approaches neither accurately represent real-world conditions nor adequately address the issue of noisy data availability. For instance, a blurry image cannot be simply replaced with zero vectors, and still retain information. To tackle this issue and develop a more precise MER system, we introduce a novel noise-robust MER model that effectively learns robust multimodal joint representations from noisy data. This approach includes two pivotal components: firstly, a noise scheduler that adjusts the type and level of noise in the data to emulate various realistic incomplete situations. Secondly, a Variational AutoEncoder (VAE)-based module is employed to reconstruct these robust multimodal joint representations from the noisy inputs. Notably, the introduction of the noise scheduler enables the exploration of an entirely new type of incomplete data condition, which is impossible with existing methods. Extensive experimental evaluations on the benchmark datasets IEMOCAP and CMU-MOSEI demonstrate the effectiveness of the noise scheduler and the excellent performance of our proposed model.

V2X cooperation, through the integration of sensor data from both vehicles and infrastructure, is considered a pivotal approach to advancing autonomous driving technology. Current research primarily focuses on enhancing perception accuracy, often overlooking the systematic improvement of accident prediction accuracy through end-to-end learning, leading to insufficient attention to the safety issues of autonomous driving. To address this challenge, this paper introduces the UniE2EV2X framework, a V2X-integrated end-to-end autonomous driving system that consolidates key driving modules within a unified network. The framework employs a deformable attention-based data fusion strategy, effectively facilitating cooperation between vehicles and infrastructure. The main advantages include: 1) significantly enhancing agents' perception and motion prediction capabilities, thereby improving the accuracy of accident predictions; 2) ensuring high reliability in the data fusion process; 3) superior end-to-end perception compared to modular approaches. Furthermore, We implement the UniE2EV2X framework on the challenging DeepAccident, a simulation dataset designed for V2X cooperative driving.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.

Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司