The Transformer architecture has proven to be highly effective for Automatic Speech Recognition (ASR) tasks, becoming a foundational component for a plethora of research in the domain. Historically, many approaches have leaned on fixed-length attention windows, which becomes problematic for varied speech samples in duration and complexity, leading to data over-smoothing and neglect of essential long-term connectivity. Addressing this limitation, we introduce Echo-MSA, a nimble module equipped with a variable-length attention mechanism that accommodates a range of speech sample complexities and durations. This module offers the flexibility to extract speech features across various granularities, spanning from frames and phonemes to words and discourse. The proposed design captures the variable length feature of speech and addresses the limitations of fixed-length attention. Our evaluation leverages a parallel attention architecture complemented by a dynamic gating mechanism that amalgamates traditional attention with the Echo-MSA module output. Empirical evidence from our study reveals that integrating Echo-MSA into the primary model's training regime significantly enhances the word error rate (WER) performance, all while preserving the intrinsic stability of the original model.
The Mixture of Experts (MoE) for language models has been proven effective in augmenting the capacity of models by dynamically routing each input token to a specific subset of experts for processing. Despite the success, most existing methods face a challenge for balance between sparsity and the availability of expert knowledge: enhancing performance through increased use of expert knowledge often results in diminishing sparsity during expert selection. To mitigate this contradiction, we propose HyperMoE, a novel MoE framework built upon Hypernetworks. This framework integrates the computational processes of MoE with the concept of knowledge transferring in multi-task learning. Specific modules generated based on the information of unselected experts serve as supplementary information, which allows the knowledge of experts not selected to be used while maintaining selection sparsity. Our comprehensive empirical evaluations across multiple datasets and backbones establish that HyperMoE significantly outperforms existing MoE methods under identical conditions concerning the number of experts.
With the utilization of Transformer architecture, large Vision and Language (V&L) models have shown promising performance in even zero-shot settings. Several studies, however, indicate a lack of robustness of the models when dealing with complex linguistics and visual attributes. In this work, we introduce a novel V&L benchmark - ColorFoil, by creating color-related foils to assess the models' perception ability to detect colors like red, white, green, etc. We evaluate seven state-of-the-art V&L models including CLIP, ViLT, GroupViT, and BridgeTower, etc. in a zero-shot setting and present intriguing findings from the V&L models. The experimental evaluation indicates that ViLT and BridgeTower demonstrate much better color perception capabilities compared to CLIP and its variants and GroupViT. Moreover, CLIP-based models and GroupViT struggle to distinguish colors that are visually distinct to humans with normal color perception ability.
Graph Neural Networks (GNNs) have emerged as promising solutions for collaborative filtering (CF) through the modeling of user-item interaction graphs. The nucleus of existing GNN-based recommender systems involves recursive message passing along user-item interaction edges to refine encoded embeddings. Despite their demonstrated effectiveness, current GNN-based methods encounter challenges of limited receptive fields and the presence of noisy "interest-irrelevant" connections. In contrast, Transformer-based methods excel in aggregating information adaptively and globally. Nevertheless, their application to large-scale interaction graphs is hindered by inherent complexities and challenges in capturing intricate, entangled structural information. In this paper, we propose TransGNN, a novel model that integrates Transformer and GNN layers in an alternating fashion to mutually enhance their capabilities. Specifically, TransGNN leverages Transformer layers to broaden the receptive field and disentangle information aggregation from edges, which aggregates information from more relevant nodes, thereby enhancing the message passing of GNNs. Additionally, to capture graph structure information effectively, positional encoding is meticulously designed and integrated into GNN layers to encode such structural knowledge into node attributes, thus enhancing the Transformer's performance on graphs. Efficiency considerations are also alleviated by proposing the sampling of the most relevant nodes for the Transformer, along with two efficient sample update strategies to reduce complexity. Furthermore, theoretical analysis demonstrates that TransGNN offers increased expressiveness compared to GNNs, with only a marginal increase in linear complexity. Extensive experiments on five public datasets validate the effectiveness and efficiency of TransGNN.
Deep learning methods, especially Convolutional Neural Networks (CNN) and Vision Transformer (ViT), are frequently employed to perform semantic segmentation of high-resolution remotely sensed images. However, CNNs are constrained by their restricted receptive fields, while ViTs face challenges due to their quadratic complexity. Recently, the Mamba model, featuring linear complexity and a global receptive field, has gained extensive attention for vision tasks. In such tasks, images need to be serialized to form sequences compatible with the Mamba model. Numerous research efforts have explored scanning strategies to serialize images, aiming to enhance the Mamba model's understanding of images. However, the effectiveness of these scanning strategies remains uncertain. In this research, we conduct a comprehensive experimental investigation on the impact of mainstream scanning directions and their combinations on semantic segmentation of remotely sensed images. Through extensive experiments on the LoveDA, ISPRS Potsdam, and ISPRS Vaihingen datasets, we demonstrate that no single scanning strategy outperforms others, regardless of their complexity or the number of scanning directions involved. A simple, single scanning direction is deemed sufficient for semantic segmentation of high-resolution remotely sensed images. Relevant directions for future research are also recommended.
The advent of Large Language Models (LLMs) has ushered in a new era for design science in Information Systems, demanding a paradigm shift in tailoring LLMs design for business contexts. We propose and test a novel framework to customize LLMs for general business contexts that aims to achieve three fundamental objectives simultaneously: (1) aligning conversational patterns, (2) integrating in-depth domain knowledge, and (3) embodying theory-driven soft skills and core principles. We design methodologies that combine domain-specific theory with Supervised Fine Tuning (SFT) to achieve these objectives simultaneously. We instantiate our proposed framework in the context of medical consultation. Specifically, we carefully construct a large volume of real doctors' consultation records and medical knowledge from multiple professional databases. Additionally, drawing on medical theory, we identify three soft skills and core principles of human doctors: professionalism, explainability, and emotional support, and design approaches to integrate these traits into LLMs. We demonstrate the feasibility of our framework using online experiments with thousands of real patients as well as evaluation by domain experts and consumers. Experimental results show that the customized LLM model substantially outperforms untuned base model in medical expertise as well as consumer satisfaction and trustworthiness, and it substantially reduces the gap between untuned LLMs and human doctors, elevating LLMs to the level of human experts. Additionally, we delve into the characteristics of textual consultation records and adopt interpretable machine learning techniques to identify what drives the performance gain. Finally, we showcase the practical value of our model through a decision support system designed to assist human doctors in a lab experiment.
The issue of dark patterns and deceptive designs (DPs) in everyday interfaces and interactions continues to grow. DPs are manipulative and malicious elements within user interfaces that deceive users into making unintended choices. In parallel, research on DPs has significantly increased over the past two decades. As the field has matured, epistemological gaps have also become a salient and pressing concern. In this scoping review, we assessed the academic work so far -- 51 papers between 2014 to 2023 -- to identify the state of theory in DP research. We identified the key theories employed, examined how these theories have been referenced, and call for enhancing the incorporation of theory into DP research. We also propose broad theoretical foundations to establish a comprehensive and solid base for contextualizing and informing future DP research from a variety of theoretical scopes and lenses.
Medical images are often more difficult to acquire than natural images due to the specialism of the equipment and technology, which leads to less medical image datasets. So it is hard to train a strong pretrained medical vision model. How to make the best of natural pretrained vision model and adapt in medical domain still pends. For image classification, a popular method is linear probe (LP). However, LP only considers the output after feature extraction. Yet, there exists a gap between input medical images and natural pretrained vision model. We introduce visual prompting (VP) to fill in the gap, and analyze the strategies of coupling between LP and VP. We design a joint learning loss function containing categorisation loss and discrepancy loss, which describe the variance of prompted and plain images, naming this joint training strategy MoVL (Mixture of Visual Prompting and Linear Probe). We experiment on 4 medical image classification datasets, with two mainstream architectures, ResNet and CLIP. Results shows that without changing the parameters and architecture of backbone model and with less parameters, there is potential for MoVL to achieve full finetune (FF) accuracy (on four medical datasets, average 90.91% for MoVL and 91.13% for FF). On out of distribution medical dataset, our method(90.33%) can outperform FF (85.15%) with absolute 5.18 % lead.
In the post-deep learning era, the Transformer architecture has demonstrated its powerful performance across pre-trained big models and various downstream tasks. However, the enormous computational demands of this architecture have deterred many researchers. To further reduce the complexity of attention models, numerous efforts have been made to design more efficient methods. Among them, the State Space Model (SSM), as a possible replacement for the self-attention based Transformer model, has drawn more and more attention in recent years. In this paper, we give the first comprehensive review of these works and also provide experimental comparisons and analysis to better demonstrate the features and advantages of SSM. Specifically, we first give a detailed description of principles to help the readers quickly capture the key ideas of SSM. After that, we dive into the reviews of existing SSMs and their various applications, including natural language processing, computer vision, graph, multi-modal and multi-media, point cloud/event stream, time series data, and other domains. In addition, we give statistical comparisons and analysis of these models and hope it helps the readers to understand the effectiveness of different structures on various tasks. Then, we propose possible research points in this direction to better promote the development of the theoretical model and application of SSM. More related works will be continuously updated on the following GitHub: //github.com/Event-AHU/Mamba_State_Space_Model_Paper_List.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
An effective and efficient architecture performance evaluation scheme is essential for the success of Neural Architecture Search (NAS). To save computational cost, most of existing NAS algorithms often train and evaluate intermediate neural architectures on a small proxy dataset with limited training epochs. But it is difficult to expect an accurate performance estimation of an architecture in such a coarse evaluation way. This paper advocates a new neural architecture evaluation scheme, which aims to determine which architecture would perform better instead of accurately predict the absolute architecture performance. Therefore, we propose a \textbf{relativistic} architecture performance predictor in NAS (ReNAS). We encode neural architectures into feature tensors, and further refining the representations with the predictor. The proposed relativistic performance predictor can be deployed in discrete searching methods to search for the desired architectures without additional evaluation. Experimental results on NAS-Bench-101 dataset suggests that, sampling 424 ($0.1\%$ of the entire search space) neural architectures and their corresponding validation performance is already enough for learning an accurate architecture performance predictor. The accuracies of our searched neural architectures on NAS-Bench-101 and NAS-Bench-201 datasets are higher than that of the state-of-the-art methods and show the priority of the proposed method.