We prove that the blocklength $n$ of a linear $3$-query locally correctable code (LCC) $\mathcal{L} \colon {\mathbb F}^k \to {\mathbb F}^n$ with distance $\delta$ must be at least $n \geq 2^{\Omega\left(\left(\frac{\delta^2 k}{(|{\mathbb F}|-1)^2}\right)^{1/8}\right)}$. In particular, the blocklength of a linear $3$-query LCC with constant distance over any small field grows exponentially with $k$. This improves on the best prior lower bound of $n \geq \tilde{\Omega}(k^3)$ [AGKM23], which holds even for the weaker setting of $3$-query locally decodable codes (LDCs), and comes close to matching the best-known construction of $3$-query LCCs based on binary Reed-Muller codes, which achieve $n \leq 2^{O(k^{1/2})}$. Because there is a $3$-query LDC with a strictly subexponential blocklength [Yek08, Efr09], as a corollary we obtain the first strong separation between $q$-query LCCs and LDCs for any constant $q \geq 3$. Our proof is based on a new upgrade of the method of spectral refutations via Kikuchi matrices developed in recent works [GKM22, HKM23, AGKM23] that reduces establishing (non-)existence of combinatorial objects to proving unsatisfiability of associated XOR instances. Our key conceptual idea is to apply this method with XOR instances obtained via long-chain derivations, a structured variant of low-width resolution for XOR formulas from proof complexity [Gri01, Sch08].
We show that any bounded integral function $f : A \times B \mapsto \{0,1, \dots, \Delta\}$ with rank $r$ has deterministic communication complexity $\Delta^{O(\Delta)} \cdot \sqrt{r} \cdot \log^2 r$, where the rank of $f$ is defined to be the rank of the $A \times B$ matrix whose entries are the function values. As a corollary, we show that any $n$-dimensional polytope that admits a slack matrix with entries from $\{0,1,\dots,\Delta\}$ has extension complexity at most $\exp(\Delta^{O(\Delta)} \cdot \sqrt{n} \cdot \log^2 n)$.
We study a class of functional problems reducible to computing $f^{(n)}(x)$ for inputs $n$ and $x$, where $f$ is a polynomial-time bijection. As we prove, the definition is robust against variations in the type of reduction used in its definition, and in whether we require $f$ to have a polynomial-time inverse or to be computible by a reversible logic circuit. These problems are characterized by the complexity class $\mathsf{FP}^{\mathsf{PSPACE}}$, and include natural $\mathsf{FP}^{\mathsf{PSPACE}}$-complete problems in circuit complexity, cellular automata, graph algorithms, and the dynamical systems described by piecewise-linear transformations.
We present a randomized algorithm that computes single-source shortest paths (SSSP) in $O(m\log^8(n)\log W)$ time when edge weights are integral and can be negative. This essentially resolves the classic negative-weight SSSP problem. The previous bounds are $\tilde O((m+n^{1.5})\log W)$ [BLNPSSSW FOCS'20] and $m^{4/3+o(1)}\log W$ [AMV FOCS'20]. Near-linear time algorithms were known previously only for the special case of planar directed graphs [Fakcharoenphol and Rao FOCS'01]. In contrast to all recent developments that rely on sophisticated continuous optimization methods and dynamic algorithms, our algorithm is simple: it requires only a simple graph decomposition and elementary combinatorial tools. In fact, ours is the first combinatorial algorithm for negative-weight SSSP to break through the classic $\tilde O(m\sqrt{n}\log W)$ bound from over three decades ago [Gabow and Tarjan SICOMP'89].
We give a fully dynamic algorithm maintaining a $(1-\varepsilon)$-approximate directed densest subgraph in $\tilde{O}(\log^3(n)/\varepsilon^6)$ amortized time or $\tilde{O}(\log^4(n)/\varepsilon^7)$ worst-case time per edge update (where $\tilde{O}$ hides $\log\log$ factors), based on earlier work by Chekuri and Quanrud [arXiv:2210.02611, arXiv:2310.18146]. This result improves on earlier work done by Sawlani and Wang [arXiv:1907.03037], which guarantees $O(\log^5(n)/\varepsilon^7)$ worst case time for edge insertions and deletions.
Complexity classes such as $\#\mathbf{P}$, $\oplus\mathbf{P}$, $\mathbf{GapP}$, $\mathbf{OptP}$, $\mathbf{NPMV}$, or the class of fuzzy languages realised by polynomial-time fuzzy nondeterministic Turing machines, can all be described in terms of a class $\mathbf{NP}[S]$ for a suitable semiring $S$, defined via weighted Turing machines over $S$ similarly as $\mathbf{NP}$ is defined via the classical nondeterministic Turing machines. Other complexity classes of decision problems can be lifted to the quantitative world using the same recipe as well, and the resulting classes relate to the original ones in the same way as weighted automata or logics relate to their unweighted counterparts. The article surveys these too-little-known connexions between weighted automata theory and computational complexity theory implicit in the existing literature, suggests a systematic approach to the study of weighted complexity classes, and presents several new observations strengthening the relation between both fields. In particular, it is proved that a natural extension of the Boolean satisfiability problem to weighted propositional logic is complete for the class $\mathbf{NP}[S]$ when $S$ is a finitely generated semiring. Moreover, a class of semiring-valued functions $\mathbf{FP}[S]$ is introduced for each semiring $S$ as a counterpart to the class $\mathbf{P}$, and the relations between $\mathbf{FP}[S]$ and $\mathbf{NP}[S]$ are considered.
We study the task of $(\epsilon, \delta)$-differentially private online convex optimization (OCO). In the online setting, the release of each distinct decision or iterate carries with it the potential for privacy loss. This problem has a long history of research starting with Jain et al. [2012] and the best known results for the regime of {\epsilon} being very small are presented in Agarwal et al. [2023]. In this paper we improve upon the results of Agarwal et al. [2023] in terms of the dimension factors as well as removing the requirement of smoothness. Our results are now the best known rates for DP-OCO in this regime. Our algorithms builds upon the work of [Asi et al., 2023] which introduced the idea of explicitly limiting the number of switches via rejection sampling. The main innovation in our algorithm is the use of sampling from a strongly log-concave density which allows us to trade-off the dimension factors better leading to improved results.
We present algorithms for the computation of $\varepsilon$-coresets for $k$-median clustering of point sequences in $\mathbb{R}^d$ under the $p$-dynamic time warping (DTW) distance. Coresets under DTW have not been investigated before, and the analysis is not directly accessible to existing methods as DTW is not a metric. The three main ingredients that allow our construction of coresets are the adaptation of the $\varepsilon$-coreset framework of sensitivity sampling, bounds on the VC dimension of approximations to the range spaces of balls under DTW, and new approximation algorithms for the $k$-median problem under DTW. We achieve our results by investigating approximations of DTW that provide a trade-off between the provided accuracy and amenability to known techniques. In particular, we observe that given $n$ curves under DTW, one can directly construct a metric that approximates DTW on this set, permitting the use of the wealth of results on metric spaces for clustering purposes. The resulting approximations are the first with polynomial running time and achieve a very similar approximation factor as state-of-the-art techniques. We apply our results to produce a practical algorithm approximating $(k,\ell)$-median clustering under DTW.
For a permutation $\pi: [K]\rightarrow [K]$, a sequence $f: \{1,2,\cdots, n\}\rightarrow \mathbb R$ contains a $\pi$-pattern of size $K$, if there is a sequence of indices $(i_1, i_2, \cdots, i_K)$ ($i_1<i_2<\cdots<i_K$), satisfying that $f(i_a)<f(i_b)$ if $\pi(a)<\pi(b)$, for $a,b\in [K]$. Otherwise, $f$ is referred to as $\pi$-free. For the special case where $\pi = (1,2,\cdots, K)$, it is referred to as the monotone pattern. \cite{newman2017testing} initiated the study of testing $\pi$-freeness with one-sided error. They focused on two specific problems, testing the monotone permutations and the $(1,3,2)$ permutation. For the problem of testing monotone permutation $(1,2,\cdots,K)$, \cite{ben2019finding} improved the $(\log n)^{O(K^2)}$ non-adaptive query complexity of \cite{newman2017testing} to $O((\log n)^{\lfloor \log_{2} K\rfloor})$. Further, \cite{ben2019optimal} proposed an adaptive algorithm with $O(\log n)$ query complexity. However, no progress has yet been made on the problem of testing $(1,3,2)$-freeness. In this work, we present an adaptive algorithm for testing $(1,3,2)$-freeness. The query complexity of our algorithm is $O(\epsilon^{-2}\log^4 n)$, which significantly improves over the $O(\epsilon^{-7}\log^{26}n)$-query adaptive algorithm of \cite{newman2017testing}. This improvement is mainly achieved by the proposal of a new structure embedded in the patterns.
For which unary predicates $P_1, \ldots, P_m$ is the MSO theory of the structure $\langle \mathbb{N}; <, P_1, \ldots, P_m \rangle$ decidable? We survey the state of the art, leading us to investigate combinatorial properties of almost-periodic, morphic, and toric words. In doing so, we show that if each $P_i$ can be generated by a toric dynamical system of a certain kind, then the attendant MSO theory is decidable.
Given a graph $G$, an integer $k\geq 0$, and a non-negative integral function $f:V(G) \rightarrow \mathcal{N}$, the {\sc Vector Domination} problem asks whether a set $S$ of vertices, of cardinality $k$ or less, exists in $G$ so that every vertex $v \in V(G)-S$ has at least $f(v)$ neighbors in $S$. The problem generalizes several domination problems and it has also been shown to generalize Bounded-Degree Vertex Deletion. In this paper, the parameterized version of Vector Domination is studied when the input graph is planar. A linear problem kernel is presented.