We consider constrained sampling problems in paid research studies or clinical trials. When qualified volunteers are more than the budget allowed, we recommend a D-optimal sampling strategy based on the optimal design theory and develop a constrained lift-one algorithm to find the optimal allocation. Unlike the literature which mainly dealt with linear models, our solution solves the constrained sampling problem under fairly general statistical models, including generalized linear models and multinomial logistic models, and with more general constraints. We justify theoretically the optimality of our sampling strategy and show by simulation studies and real world examples the advantages over simple random sampling and proportionally stratified sampling strategies.
Compact finite-difference (FD) schemes specify derivative approximations implicitly, thus to achieve parallelism with domain-decomposition suitable partitioning of linear systems is required. Consistent order of accuracy, dispersion, and dissipation is crucial to maintain in wave propagation problems such that deformation of the associated spectra of the discretized problems is not too severe. In this work we consider numerically tuning spectral error, at fixed formal order of accuracy to automatically devise new compact FD schemes. Grid convergence tests indicate error reduction of at least an order of magnitude over standard FD. A proposed hybrid matching-communication strategy maintains the aforementioned properties under domain-decomposition. Under evolution of linear wave-propagation problems utilizing exponential integration or explicit Runge-Kutta methods improvement is found to remain robust. A first demonstration that compact FD methods may be applied to the Z4c formulation of numerical relativity is provided where we couple our header-only, templated C++ implementation to the highly performant GR-Athena++ code. Evolving Z4c on test-bed problems shows at least an order in magnitude reduction in phase error compared to FD for propagated metric components. Stable binary-black-hole evolution utilizing compact FD together with improved convergence is also demonstrated.
In inverse optimization problems, the goal is to modify the costs in an underlying optimization problem in such a way that a given solution becomes optimal, while the difference between the new and the original cost functions, called the deviation vector, is minimized with respect to some objective function. The $\ell_1$- and $\ell_\infty$-norms are standard objectives used to measure the size of the deviation. Minimizing the $\ell_1$-norm is a natural way of keeping the total change of the cost function low, while the $\ell_\infty$-norm achieves the same goal coordinate-wise. Nevertheless, none of these objectives is suitable to provide a balanced or fair change of the costs. In this paper, we initiate the study of a new objective that measures the difference between the largest and the smallest weighted coordinates of the deviation vector, called the weighted span. We give a min-max characterization for the minimum weighted span of a feasible deviation vector, and provide a Newton-type algorithm for finding one that runs in strongly polynomial time in the case of unit weights.
We consider a reinforcement learning setting in which the deployment environment is different from the training environment. Applying a robust Markov decision processes formulation, we extend the distributionally robust $Q$-learning framework studied in Liu et al. [2022]. Further, we improve the design and analysis of their multi-level Monte Carlo estimator. Assuming access to a simulator, we prove that the worst-case expected sample complexity of our algorithm to learn the optimal robust $Q$-function within an $\epsilon$ error in the sup norm is upper bounded by $\tilde O(|S||A|(1-\gamma)^{-5}\epsilon^{-2}p_{\wedge}^{-6}\delta^{-4})$, where $\gamma$ is the discount rate, $p_{\wedge}$ is the non-zero minimal support probability of the transition kernels and $\delta$ is the uncertainty size. This is the first sample complexity result for the model-free robust RL problem. Simulation studies further validate our theoretical results.
In real-world phenomena which involve mutual influence or causal effects between interconnected units, equilibrium states are typically represented with cycles in graphical models. An expressive class of graphical models, relational causal models, can represent and reason about complex dynamic systems exhibiting such cycles or feedback loops. Existing cyclic causal discovery algorithms for learning causal models from observational data assume that the data instances are independent and identically distributed which makes them unsuitable for relational causal models. At the same time, causal discovery algorithms for relational causal models assume acyclicity. In this work, we examine the necessary and sufficient conditions under which a constraint-based relational causal discovery algorithm is sound and complete for cyclic relational causal models. We introduce relational acyclification, an operation specifically designed for relational models that enables reasoning about the identifiability of cyclic relational causal models. We show that under the assumptions of relational acyclification and $\sigma$-faithfulness, the relational causal discovery algorithm RCD (Maier et al. 2013) is sound and complete for cyclic models. We present experimental results to support our claim.
We consider the problem of supervised dimension reduction with a particular focus on extreme values of the target $Y\in\mathbb{R}$ to be explained by a covariate vector $X \in \mathbb{R}^p$. The general purpose is to define and estimate a projection on a lower dimensional subspace of the covariate space which is sufficient for predicting exceedances of the target above high thresholds. We propose an original definition of Tail Conditional Independence which matches this purpose. Inspired by Sliced Inverse Regression (SIR) methods, we develop a novel framework (TIREX, Tail Inverse Regression for EXtreme response) in order to estimate an extreme sufficient dimension reduction (SDR) space of potentially smaller dimension than that of a classical SDR space. We prove the weak convergence of tail empirical processes involved in the estimation procedure and we illustrate the relevance of the proposed approach on simulated and real world data.
The paper introduces DiSProD, an online planner developed for environments with probabilistic transitions in continuous state and action spaces. DiSProD builds a symbolic graph that captures the distribution of future trajectories, conditioned on a given policy, using independence assumptions and approximate propagation of distributions. The symbolic graph provides a differentiable representation of the policy's value, enabling efficient gradient-based optimization for long-horizon search. The propagation of approximate distributions can be seen as an aggregation of many trajectories, making it well-suited for dealing with sparse rewards and stochastic environments. An extensive experimental evaluation compares DiSProD to state-of-the-art planners in discrete-time planning and real-time control of robotic systems. The proposed method improves over existing planners in handling stochastic environments, sensitivity to search depth, sparsity of rewards, and large action spaces. Additional real-world experiments demonstrate that DiSProD can control ground vehicles and surface vessels to successfully navigate around obstacles.
Specifying reward functions for complex tasks like object manipulation or driving is challenging to do by hand. Reward learning seeks to address this by learning a reward model using human feedback on selected query policies. This shifts the burden of reward specification to the optimal design of the queries. We propose a theoretical framework for studying reward learning and the associated optimal experiment design problem. Our framework models rewards and policies as nonparametric functions belonging to subsets of Reproducing Kernel Hilbert Spaces (RKHSs). The learner receives (noisy) oracle access to a true reward and must output a policy that performs well under the true reward. For this setting, we first derive non-asymptotic excess risk bounds for a simple plug-in estimator based on ridge regression. We then solve the query design problem by optimizing these risk bounds with respect to the choice of query set and obtain a finite sample statistical rate, which depends primarily on the eigenvalue spectrum of a certain linear operator on the RKHSs. Despite the generality of these results, our bounds are stronger than previous bounds developed for more specialized problems. We specifically show that the well-studied problem of Gaussian process (GP) bandit optimization is a special case of our framework, and that our bounds either improve or are competitive with known regret guarantees for the Mat\'ern kernel.
Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.
The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.