亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quickly and reliably finding accurate inverse kinematics (IK) solutions remains a challenging problem for many robot manipulators. Existing numerical solvers are broadly applicable but typically only produce a single solution and rely on local search techniques to minimize nonconvex objective functions. More recent learning-based approaches that approximate the entire feasible set of solutions have shown promise as a means to generate multiple fast and accurate IK results in parallel. However, existing learning-based techniques have a significant drawback: each robot of interest requires a specialized model that must be trained from scratch. To address this key shortcoming, we propose a novel distance-geometric robot representation coupled with a graph structure that allows us to leverage the sample efficiency of Euclidean equivariant functions and the generalizability of graph neural networks (GNNs). Our approach is generative graphical inverse kinematics (GGIK), the first learned IK solver able to accurately and efficiently produce a large number of diverse solutions in parallel while also displaying the ability to generalize -- a single learned model can be used to produce IK solutions for a variety of different robots. When compared to several other learned IK methods, GGIK provides more accurate solutions with the same amount of data. GGIK can generalize reasonably well to robot manipulators unseen during training. Additionally, GGIK can learn a constrained distribution that encodes joint limits and scales efficiently to larger robots and a high number of sampled solutions. Finally, GGIK can be used to complement local IK solvers by providing reliable initializations for a local optimization process.

相關內容

Toward desirable saliency prediction, the types and numbers of inputs for a salient object detection (SOD) algorithm may dynamically change in many real-life applications. However, existing SOD algorithms are mainly designed or trained for one particular type of inputs, failing to be generalized to other types of inputs. Consequentially, more types of SOD algorithms need to be prepared in advance for handling different types of inputs, raising huge hardware and research costs. Differently, in this paper, we propose a new type of SOD task, termed Arbitrary Modality SOD (AM SOD). The most prominent characteristics of AM SOD are that the modality types and modality numbers will be arbitrary or dynamically changed. The former means that the inputs to the AM SOD algorithm may be arbitrary modalities such as RGB, depths, or even any combination of them. While, the latter indicates that the inputs may have arbitrary modality numbers as the input type is changed, e.g. single-modality RGB image, dual-modality RGB-Depth (RGB-D) images or triple-modality RGB-Depth-Thermal (RGB-D-T) images. Accordingly, a preliminary solution to the above challenges, \i.e. a modality switch network (MSN), is proposed in this paper. In particular, a modality switch feature extractor (MSFE) is first designed to extract discriminative features from each modality effectively by introducing some modality indicators, which will generate some weights for modality switching. Subsequently, a dynamic fusion module (DFM) is proposed to adaptively fuse features from a variable number of modalities based on a novel Transformer structure. Finally, a new dataset, named AM-XD, is constructed to facilitate research on AM SOD. Extensive experiments demonstrate that our AM SOD method can effectively cope with changes in the type and number of input modalities for robust salient object detection.

We study learnability of linear utility functions from pairwise comparison queries. In particular, we consider two learning objectives. The first objective is to predict out-of-sample responses to pairwise comparisons, whereas the second is to approximately recover the true parameters of the utility function. We show that in the passive learning setting, linear utilities are efficiently learnable with respect to the first objective, both when query responses are uncorrupted by noise, and under Tsybakov noise when the distributions are sufficiently "nice". In contrast, we show that utility parameters are not learnable for a large set of data distributions without strong modeling assumptions, even when query responses are noise-free. Next, we proceed to analyze the learning problem in an active learning setting. In this case, we show that even the second objective is efficiently learnable, and present algorithms for both the noise-free and noisy query response settings. Our results thus exhibit a qualitative learnability gap between passive and active learning from pairwise preference queries, demonstrating the value of the ability to select pairwise queries for utility learning.

We establish the fundamental limits in the approximation of Lipschitz functions by deep ReLU neural networks with finite-precision weights. Specifically, three regimes, namely under-, over-, and proper quantization, in terms of minimax approximation error behavior as a function of network weight precision, are identified. This is accomplished by deriving nonasymptotic tight lower and upper bounds on the minimax approximation error. Notably, in the proper-quantization regime, neural networks exhibit memory-optimality in the approximation of Lipschitz functions. Deep networks have an inherent advantage over shallow networks in achieving memory-optimality. We also develop the notion of depth-precision tradeoff, showing that networks with high-precision weights can be converted into functionally equivalent deeper networks with low-precision weights, while preserving memory-optimality. This idea is reminiscent of sigma-delta analog-to-digital conversion, where oversampling rate is traded for resolution in the quantization of signal samples. We improve upon the best-known ReLU network approximation results for Lipschitz functions and describe a refinement of the bit extraction technique which could be of independent general interest.

We propose new algorithms with provable performance for online binary optimization subject to general constraints and in dynamic settings. We consider the subset of problems in which the objective function is submodular. We propose the online submodular greedy algorithm (OSGA) which solves to optimality an approximation of the previous round loss function to avoid the NP-hardness of the original problem. We extend OSGA to a generic approximation function. We show that OSGA has a dynamic regret bound similar to the tightest bounds in online convex optimization with respect to the time horizon and the cumulative round optimum variation. For instances where no approximation exists or a computationally simpler implementation is desired, we design the online submodular projected gradient descent (OSPGD) by leveraging the Lova\'sz extension. We obtain a regret bound that is akin to the conventional online gradient descent (OGD). Finally, we numerically test our algorithms in two power system applications: fast-timescale demand response and real-time distribution network reconfiguration.

One of the most important processing steps in any analysis pipeline is handling missing data. Traditional approaches simply delete any sample or feature with missing elements. Recent imputation methods replace missing data based on assumed relationships between observed data and the missing elements. However, there is a largely under-explored alternative amid these extremes. Partial deletion approaches remove excessive amounts of missing data, as defined by the user. They can be used in place of traditional deletion or as a precursor to imputation. In this manuscript, we expand upon the Mr. Clean suite of algorithms, focusing on the scenario where all missing data is removed. We show that the RowCol Integer Program can be recast as a Linear Program, thereby reducing runtime. Additionally, the Element Integer Program can be reformulated to reduce the number of variables and allow for high levels of parallelization. Using real-world data sets from genetic, gene expression, and single cell RNA-seq experiments we demonstrate that our algorithms outperform existing deletion techniques over several missingness values, balancing runtime and data retention. Our combined greedy algorithm retains the maximum number of valid elements in 126 of 150 scenarios and stays within 1\% of maximum in 23 of the remaining experiments. The reformulated Element IP complements the greedy algorithm when removing all missing data, boasting a reduced runtime and increase in valid elements in larger data sets, over its generic counterpart. These two programs greatly increase the amount of valid data retained over traditional deletion techniques and further improve on existing partial deletion algorithms.

Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.

Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

北京阿比特科技有限公司