亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Text structuralization is one of the important fields of natural language processing (NLP) consists of information extraction (IE) and structure formalization. However, current studies of text structuralization suffer from a shortage of manually annotated high-quality datasets from different domains and languages, which require specialized professional knowledge. In addition, most IE methods are designed for a specific type of structured data, e.g., entities, relations, and events, making them hard to generalize to others. In this work, we propose a simple and efficient approach to instruct large language model (LLM) to extract a variety of structures from texts. More concretely, we add a prefix and a suffix instruction to indicate the desired IE task and structure type, respectively, before feeding the text into a LLM. Experiments on two LLMs show that this approach can enable language models to perform comparable with other state-of-the-art methods on datasets of a variety of languages and knowledge, and can generalize to other IE sub-tasks via changing the content of instruction. Another benefit of our approach is that it can help researchers to build datasets in low-source and domain-specific scenarios, e.g., fields in finance and law, with low cost.

相關內容

The progress of autonomous web navigation has been hindered by the dependence on billions of exploratory interactions via online reinforcement learning, and domain-specific model designs that make it difficult to leverage generalization from rich out-of-domain data. In this work, we study data-driven offline training for web agents with vision-language foundation models. We propose an instruction-following multimodal agent, WebGUM, that observes both webpage screenshots and HTML pages and outputs web navigation actions, such as click and type. WebGUM is trained by jointly finetuning an instruction-finetuned language model and a vision transformer on a large corpus of demonstrations. We empirically demonstrate this recipe improves the agent's ability of grounded visual perception, HTML comprehension and multi-step reasoning, outperforming prior works by a significant margin. On the MiniWoB benchmark, we improve over the previous best offline methods by more than 31.9%, being close to reaching online-finetuned SoTA. On the WebShop benchmark, our 3-billion-parameter model achieves superior performance to the existing SoTA, PaLM-540B. We also collect 347K high-quality demonstrations using our trained models, 38 times larger than prior work, and make them available to promote future research in this direction.

Large language models (LLMs) have shown remarkable capabilities in language understanding and generation. However, such impressive capability typically comes with a substantial model size, which presents significant challenges in both the deployment, inference, and training stages. With LLM being a general-purpose task solver, we explore its compression in a task-agnostic manner, which aims to preserve the multi-task solving and language generation ability of the original LLM. One challenge to achieving this is the enormous size of the training corpus of LLM, which makes both data transfer and model post-training over-burdensome. Thus, we tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset. Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures based on gradient information, maximally preserving the majority of the LLM's functionality. To this end, the performance of pruned models can be efficiently recovered through tuning techniques, LoRA, in merely 3 hours, requiring only 50K data. We validate the LLM-Pruner on three LLMs, including LLaMA, Vicuna, and ChatGLM, and demonstrate that the compressed models still exhibit satisfactory capabilities in zero-shot classification and generation. The code is available at: //github.com/horseee/LLM-Pruner

This paper looks at the ability of large language models to participate in educational guided reading. We specifically, evaluate their ability to generate meaningful questions from the input text, generate diverse questions both in terms of content coverage and difficulty of the questions and evaluate their ability to recommend part of the text that a student should re-read based on the student's responses to the questions. Based on our evaluation of ChatGPT and Bard, we report that, 1) Large language models are able to generate high quality meaningful questions that have high correlation with the input text, 2) They generate diverse question that cover most topics in the input text even though this ability is significantly degraded as the input text increases, 3)The large language models are able to generate both low and high cognitive questions even though they are significantly biased toward low cognitive question, 4) They are able to effectively summarize responses and extract a portion of text that should be re-read.

Augmenting large language models (LLMs) with external tools has emerged as a promising approach to solving complex problems. However, traditional methods, which finetune LLMs with tool demonstration data, can be both costly and restricted to a predefined set of tools. Recent in-context learning paradigm alleviates these issues, but the limited context length only allows for a few shots of demonstrations, leading to suboptimal understandings of the tools. Moreover, when there are numerous tools to choose from, in-context learning could completely fail to work. In this paper, we propose an alternative approach, $\textbf{ToolkenGPT}$, which combines the benefits of both sides. Our approach represents each $\underline{tool}$ as a to$\underline{ken}$ ($\textit{toolken}$) and learns an embedding for it, enabling tool calls in the same way as generating a regular word token. Once a toolken is triggered, the LLM is prompted to complete arguments for the tool to execute. ToolkenGPT offers the flexibility to plug in an arbitrary number of tools by expanding the set of toolkens on the fly. In addition, it improves tool use by allowing extensive demonstration data for learning the toolken embeddings. In diverse domains, including numerical reasoning, knowledge-based question answering, and embodied plan generation, our approach effectively augments LLMs with tools and substantially outperforms various latest baselines. ToolkenGPT demonstrates the promising ability to use relevant tools from a large tool set in complex scenarios.

Large Language Models (LLMs) do not differentially represent numbers, which are pervasive in text. In contrast, neuroscience research has identified distinct neural representations for numbers and words. In this work, we investigate how well popular LLMs capture the magnitudes of numbers (e.g., that $4 < 5$) from a behavioral lens. Prior research on the representational capabilities of LLMs evaluates whether they show human-level performance, for instance, high overall accuracy on standard benchmarks. Here, we ask a different question, one inspired by cognitive science: How closely do the number representations of LLMscorrespond to those of human language users, who typically demonstrate the distance, size, and ratio effects? We depend on a linking hypothesis to map the similarities among the model embeddings of number words and digits to human response times. The results reveal surprisingly human-like representations across language models of different architectures, despite the absence of the neural circuitry that directly supports these representations in the human brain. This research shows the utility of understanding LLMs using behavioral benchmarks and points the way to future work on the number of representations of LLMs and their cognitive plausibility.

Recent research has suggested that there are clear differences in the language used in the Dark Web compared to that of the Surface Web. As studies on the Dark Web commonly require textual analysis of the domain, language models specific to the Dark Web may provide valuable insights to researchers. In this work, we introduce DarkBERT, a language model pretrained on Dark Web data. We describe the steps taken to filter and compile the text data used to train DarkBERT to combat the extreme lexical and structural diversity of the Dark Web that may be detrimental to building a proper representation of the domain. We evaluate DarkBERT and its vanilla counterpart along with other widely used language models to validate the benefits that a Dark Web domain specific model offers in various use cases. Our evaluations show that DarkBERT outperforms current language models and may serve as a valuable resource for future research on the Dark Web.

Text editing or revision is an essential function of the human writing process. Understanding the capabilities of LLMs for making high-quality revisions and collaborating with human writers is a critical step toward building effective writing assistants. With the prior success of LLMs and instruction tuning, we leverage instruction-tuned LLMs for text revision to improve the quality of user-generated text and improve the efficiency of the process. We introduce CoEdIT, a state-of-the-art text editing model for writing assistance. CoEdIT takes instructions from the user specifying the attributes of the desired text, such as "Make the sentence simpler" or "Write it in a more neutral style," and outputs the edited text. We present a large language model fine-tuned on a diverse collection of task-specific instructions for text editing (a total of 82K instructions). Our model (1) achieves state-of-the-art performance on various text editing benchmarks, (2) is competitive with publicly available largest-sized LLMs trained on instructions while being $\sim$60x smaller, (3) is capable of generalizing to unseen edit instructions, and (4) exhibits compositional comprehension abilities to generalize to instructions containing different combinations of edit actions. Through extensive qualitative and quantitative analysis, we show that writers prefer the edits suggested by CoEdIT, relative to other state-of-the-art text editing models. Our code and dataset are publicly available.

Converting text into the structured query language (Text2SQL) is a research hotspot in the field of natural language processing (NLP), which has broad application prospects. In the era of big data, the use of databases has penetrated all walks of life, in which the collected data is large in scale, diverse in variety, and wide in scope, making the data query cumbersome and inefficient, and putting forward higher requirements for the Text2SQL model. In practical applications, the current mainstream end-to-end Text2SQL model is not only difficult to build due to its complex structure and high requirements for training data, but also difficult to adjust due to massive parameters. In addition, the accuracy of the model is hard to achieve the desired result. Based on this, this paper proposes a pipelined Text2SQL method: SPSQL. This method disassembles the Text2SQL task into four subtasks--table selection, column selection, SQL generation, and value filling, which can be converted into a text classification problem, a sequence labeling problem, and two text generation problems, respectively. Then, we construct data formats of different subtasks based on existing data and improve the accuracy of the overall model by improving the accuracy of each submodel. We also use the named entity recognition module and data augmentation to optimize the overall model. We construct the dataset based on the marketing business data of the State Grid Corporation of China. Experiments demonstrate our proposed method achieves the best performance compared with the end-to-end method and other pipeline methods.

This survey paper proposes a clearer view of natural language reasoning in the field of Natural Language Processing (NLP), both conceptually and practically. Conceptually, we provide a distinct definition for natural language reasoning in NLP, based on both philosophy and NLP scenarios, discuss what types of tasks require reasoning, and introduce a taxonomy of reasoning. Practically, we conduct a comprehensive literature review on natural language reasoning in NLP, mainly covering classical logical reasoning, natural language inference, multi-hop question answering, and commonsense reasoning. The paper also identifies and views backward reasoning, a powerful paradigm for multi-step reasoning, and introduces defeasible reasoning as one of the most important future directions in natural language reasoning research. We focus on single-modality unstructured natural language text, excluding neuro-symbolic techniques and mathematical reasoning.

Attention Model has now become an important concept in neural networks that has been researched within diverse application domains. This survey provides a structured and comprehensive overview of the developments in modeling attention. In particular, we propose a taxonomy which groups existing techniques into coherent categories. We review the different neural architectures in which attention has been incorporated, and also show how attention improves interpretability of neural models. Finally, we discuss some applications in which modeling attention has a significant impact. We hope this survey will provide a succinct introduction to attention models and guide practitioners while developing approaches for their applications.

北京阿比特科技有限公司