亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we consider the uncertainty quantification problem for regression models. Specifically, we consider an individual calibration objective for characterizing the quantiles of the prediction model. While such an objective is well-motivated from downstream tasks such as newsvendor cost, the existing methods have been largely heuristic and lack of statistical guarantee in terms of individual calibration. We show via simple examples that the existing methods focusing on population-level calibration guarantees such as average calibration or sharpness can lead to harmful and unexpected results. We propose simple nonparametric calibration methods that are agnostic of the underlying prediction model and enjoy both computational efficiency and statistical consistency. Our approach enables a better understanding of the possibility of individual calibration, and we establish matching upper and lower bounds for the calibration error of our proposed methods. Technically, our analysis combines the nonparametric analysis with a covering number argument for parametric analysis, which advances the existing theoretical analyses in the literature of nonparametric density estimation and quantile bandit problems. Importantly, the nonparametric perspective sheds new theoretical insights into regression calibration in terms of the curse of dimensionality and reconciles the existing results on the impossibility of individual calibration. To our knowledge, we make the first effort to reach both individual calibration and finite-sample guarantee with minimal assumptions in terms of conformal prediction. Numerical experiments show the advantage of such a simple approach under various metrics, and also under covariates shift. We hope our work provides a simple benchmark and a starting point of theoretical ground for future research on regression calibration.

相關內容

In this paper, we study a multi-user visible light communication (VLC) system assisted with optical reflecting intelligent surface (ORIS). Joint precoding and alignment matrices are designed to maximize the average signal-to-interference plus noise ratio (SINR) criteria. Considering the constraints of the constant mean transmission power of LEDs and the power associated with all users, an optimization problem is proposed. To solve this problem, we utilize an alternating optimization algorithm to optimize the precoding and alignment matrices. The simulation results demonstrate that the resultant SINR of the proposed method outperforms ZF and MMSE precoding algorithms.

In this paper, we identify the criteria for the selection of the minimal and most efficient covariate adjustment sets for the regression calibration method developed by Carroll, Rupert and Stefanski (CRS, 1992), used to correct bias due to continuous exposure measurement error. We utilize directed acyclic graphs to illustrate how subject matter knowledge can aid in the selection of such adjustment sets. Valid measurement error correction requires the collection of data on any (1) common causes of true exposure and outcome and (2) common causes of measurement error and outcome, in both the main study and validation study. For the CRS regression calibration method to be valid, researchers need to minimally adjust for covariate set (1) in both the measurement error model (MEM) and the outcome model and adjust for covariate set (2) at least in the MEM. In practice, we recommend including the minimal covariate adjustment set in both the MEM and the outcome model. In contrast with the regression calibration method developed by Rosner, Spiegelman and Willet, it is valid and more efficient to adjust for correlates of the true exposure or of measurement error that are not risk factors in the MEM only under CRS method. We applied the proposed covariate selection approach to the Health Professional Follow-up Study, examining the effect of fiber intake on cardiovascular incidence. In this study, we demonstrated potential issues with a data-driven approach to building the MEM that is agnostic to the structural assumptions. We extend the originally proposed estimators to settings where effect modification by a covariate is allowed. Finally, we caution against the use of the regression calibration method to calibrate the true nutrition intake using biomarkers.

In this paper, we provide novel tail bounds on the optimization error of Stochastic Mirror Descent for convex and Lipschitz objectives. Our analysis extends the existing tail bounds from the classical light-tailed Sub-Gaussian noise case to heavier-tailed noise regimes. We study the optimization error of the last iterate as well as the average of the iterates. We instantiate our results in two important cases: a class of noise with exponential tails and one with polynomial tails. A remarkable feature of our results is that they do not require an upper bound on the diameter of the domain. Finally, we support our theory with illustrative experiments that compare the behavior of the average of the iterates with that of the last iterate in heavy-tailed noise regimes.

In this paper, we give an overview of a recently developed method for dynamic domain adaptation, named DIRA, which relies on a few samples in addition to a regularisation approach, named elastic weight consolidation, to achieve state-of-the-art (SOTA) domain adaptation results. DIRA has been previously shown to perform competitively with SOTA unsupervised adaption techniques. However, a limitation of DIRA is that it relies on labels to be provided for the few samples used in adaption. This makes it a supervised technique. In this paper, we propose a modification to the DIRA method to make it self-supervised i.e. remove the need for providing labels. Our proposed approach will be evaluated experimentally in future work.

With the strong robusticity on illumination variations, near-infrared (NIR) can be an effective and essential complement to visible (VIS) facial expression recognition in low lighting or complete darkness conditions. However, facial expression recognition (FER) from NIR images presents more challenging problem than traditional FER due to the limitations imposed by the data scale and the difficulty of extracting discriminative features from incomplete visible lighting contents. In this paper, we give the first attempt to deep NIR facial expression recognition and proposed a novel method called near-infrared facial expression transformer (NFER-Former). Specifically, to make full use of the abundant label information in the field of VIS, we introduce a Self-Attention Orthogonal Decomposition mechanism that disentangles the expression information and spectrum information from the input image, so that the expression features can be extracted without the interference of spectrum variation. We also propose a Hypergraph-Guided Feature Embedding method that models some key facial behaviors and learns the structure of the complex correlations between them, thereby alleviating the interference of inter-class similarity. Additionally, we have constructed a large NIR-VIS Facial Expression dataset that includes 360 subjects to better validate the efficiency of NFER-Former. Extensive experiments and ablation studies show that NFER-Former significantly improves the performance of NIR FER and achieves state-of-the-art results on the only two available NIR FER datasets, Oulu-CASIA and Large-HFE.

This paper introduces an attacking mechanism to challenge the resilience of autonomous driving systems. Specifically, we manipulate the decision-making processes of an autonomous vehicle by dynamically displaying adversarial patches on a screen mounted on another moving vehicle. These patches are optimized to deceive the object detection models into misclassifying targeted objects, e.g., traffic signs. Such manipulation has significant implications for critical multi-vehicle interactions such as intersection crossing and lane changing, which are vital for safe and efficient autonomous driving systems. Particularly, we make four major contributions. First, we introduce a novel adversarial attack approach where the patch is not co-located with its target, enabling more versatile and stealthy attacks. Moreover, our method utilizes dynamic patches displayed on a screen, allowing for adaptive changes and movement, enhancing the flexibility and performance of the attack. To do so, we design a Screen Image Transformation Network (SIT-Net), which simulates environmental effects on the displayed images, narrowing the gap between simulated and real-world scenarios. Further, we integrate a positional loss term into the adversarial training process to increase the success rate of the dynamic attack. Finally, we shift the focus from merely attacking perceptual systems to influencing the decision-making algorithms of self-driving systems. Our experiments demonstrate the first successful implementation of such dynamic adversarial attacks in real-world autonomous driving scenarios, paving the way for advancements in the field of robust and secure autonomous driving.

In this paper, we present a unified framework to simulate non-Newtonian behaviors. We combine viscous and elasto-plastic stress into a unified particle solver to achieve various non-Newtonian behaviors ranging from fluid-like to solid-like. Our constitutive model is based on a Generalized Maxwell model, which incorporates viscosity, elasticity and plasticity in one non-linear framework by a unified way. On the one hand, taking advantage of the viscous term, we construct a series of strain-rate dependent models for classical non-Newtonian behaviors such as shear-thickening, shear-thinning, Bingham plastic, etc. On the other hand, benefiting from the elasto-plastic model, we empower our framework with the ability to simulate solid-like non-Newtonian behaviors, i.e., visco-elasticity/plasticity. In addition, we enrich our method with a heat diffusion model to make our method flexible in simulating phase change. Through sufficient experiments, we demonstrate a wide range of non-Newtonian behaviors ranging from viscous fluid to deformable objects. We believe this non-Newtonian model will enhance the realism of physically-based animation, which has great potential for computer graphics.

Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.

We consider an interesting problem-salient instance segmentation in this paper. Other than producing bounding boxes, our network also outputs high-quality instance-level segments. Taking into account the category-independent property of each target, we design a single stage salient instance segmentation framework, with a novel segmentation branch. Our new branch regards not only local context inside each detection window but also its surrounding context, enabling us to distinguish the instances in the same scope even with obstruction. Our network is end-to-end trainable and runs at a fast speed (40 fps when processing an image with resolution 320x320). We evaluate our approach on a publicly available benchmark and show that it outperforms other alternative solutions. We also provide a thorough analysis of the design choices to help readers better understand the functions of each part of our network. The source code can be found at \url{//github.com/RuochenFan/S4Net}.

The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.

北京阿比特科技有限公司