亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Diffusion Magnetic Resonance Imaging (dMRI) plays a crucial role in the noninvasive investigation of tissue microstructural properties and structural connectivity in the \textit{in vivo} human brain. However, to effectively capture the intricate characteristics of water diffusion at various directions and scales, it is important to employ comprehensive q-space sampling. Unfortunately, this requirement leads to long scan times, limiting the clinical applicability of dMRI. To address this challenge, we propose SSOR, a Simultaneous q-Space sampling Optimization and Reconstruction framework. We jointly optimize a subset of q-space samples using a continuous representation of spherical harmonic functions and a reconstruction network. Additionally, we integrate the unique properties of diffusion magnetic resonance imaging (dMRI) in both the q-space and image domains by applying $l1$-norm and total-variation regularization. The experiments conducted on HCP data demonstrate that SSOR has promising strengths both quantitatively and qualitatively and exhibits robustness to noise.

相關內容

Network pruning can reduce the computation cost of deep neural network (DNN) models. However, sparse models often produce randomly-distributed weights to maintain accuracy, leading to irregular computations. Consequently, unstructured sparse models cannot achieve meaningful speedup on commodity hardware built for dense matrix computations. Accelerators are usually modified or designed with structured sparsity-optimized architectures for exploiting sparsity. For example, the Ampere architecture introduces a sparse tensor core, which adopts the 2:4 sparsity pattern. We propose a pruning method that builds upon the insight that matrix multiplication generally breaks the large matrix into multiple smaller tiles for parallel execution. We present the tile-wise sparsity pattern, which maintains a structured sparsity pattern at the tile level for efficient execution but allows for irregular pruning at the global scale to maintain high accuracy. In addition, the tile-wise sparsity is implemented at the global memory level, and the 2:4 sparsity executes at the register level inside the sparse tensor core. We can combine these two patterns into a tile-vector-wise (TVW) sparsity pattern to explore more fine-grained sparsity and further accelerate the sparse DNN models. We evaluate the TVW on the GPU, achieving averages of $1.85\times$, $2.75\times$, and $22.18\times$ speedups over the dense model, block sparsity, and unstructured sparsity.

Social networks influence behaviors, preferences, and relationships and play a crucial role in the dissemination of information and norms within human societies. As large language models (LLMs) increasingly integrate into social and professional environments, understanding their behavior within the context of social networks and interactions becomes essential. Our study analyzes the behaviors of standard network structures and real-world networks to determine whether the dynamics of multiple LLMs align with human social dynamics. We explore various social network principles, including micro-level concepts such as preferential attachment, triadic closure, and homophily, as well as macro-level concepts like community structure and the small-world phenomenon. Our findings suggest that LLMs demonstrate all these principles when they are provided with network structures and asked about their preferences regarding network formation. Furthermore, we investigate LLMs' decision-making based on real-world networks to compare the strengths of these principles. Our results reveal that triadic closure and homophily have a stronger influence than preferential attachment and that LLMs substantially exceed random guessing in the task of network formation predictions. Overall, our study contributes to the development of socially aware LLMs by shedding light on LLMs' network formation behaviors and exploring their impacts on social dynamics and norms.

Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI), especially when compared with the remarkable progress made in fine-tuning Large Language Models (LLMs). While cutting-edge diffusion models such as Stable Diffusion (SD) and SDXL rely on supervised fine-tuning, their performance inevitably plateaus after seeing a certain volume of data. Recently, reinforcement learning (RL) has been employed to fine-tune diffusion models with human preference data, but it requires at least two images ("winner" and "loser" images) for each text prompt. In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion), where the diffusion model engages in competition with its earlier versions, facilitating an iterative self-improvement process. Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment. Our experiments on the Pick-a-Pic dataset reveal that SPIN-Diffusion outperforms the existing supervised fine-tuning method in aspects of human preference alignment and visual appeal right from its first iteration. By the second iteration, it exceeds the performance of RLHF-based methods across all metrics, achieving these results with less data.

While displaying impressive generation capabilities across many tasks, Large Language Models (LLMs) still struggle with crucial issues of privacy violation and unwanted exposure of sensitive data. This raises an essential question: how should we prevent such undesired behavior of LLMs while maintaining their strong generation and natural language understanding (NLU) capabilities? In this work, we introduce a novel approach termed deliberate imagination in the context of LLM unlearning. Instead of trying to forget memorized data, we employ a self-distillation framework, guiding LLMs to deliberately imagine alternative scenarios. As demonstrated in a wide range of experiments, the proposed method not only effectively unlearns targeted text but also preserves the LLMs' capabilities in open-ended generation tasks as well as in NLU tasks. Our results demonstrate the usefulness of this approach across different models and sizes, and also with parameter-efficient fine-tuning, offering a novel pathway to addressing the challenges with private and sensitive data in LLM applications.

Mitigating the hallucinations of Large Language Models (LLMs) and enhancing them is a crucial task. Although some existing methods employ model self-enhancement techniques, they fall short of effectively addressing unknown factual hallucinations. Using Knowledge Graph (KG) enhancement approaches fails to address the generalization across different KG sources and the enhancement of open-ended answer questions simultaneously. To tackle these limitations, there is a framework that combines Pseudo-Graph Generation and Atomic Knowledge Verification proposed. The enhancement of LLM using KG in an open-ended question-answering setting is implemented by leveraging the Pseudo-Graph Generation. Atomic Knowledge Verification utilizes atomic-level knowledge querying and verification to achieve generalizability under different KG sources. Compared to the baseline, this approach yields a minimum improvement of 11.5 in the ROUGE-L score for open-ended questions. For precise questions, we observe a minimum accuracy improvement of 7.5. Moreover, there is also demonstration that this framework exhibits generalizability across different KG sources. In summary, our results pave the way for enhancing LLMs by incorporating Pseudo- and Multisource-KGs, particularly in the context of open-ended questions.

Imitation Learning (IL) is a promising paradigm for teaching robots to perform novel tasks using demonstrations. Most existing approaches for IL utilize neural networks (NN), however, these methods suffer from several well-known limitations: they 1) require large amounts of training data, 2) are hard to interpret, and 3) are hard to repair and adapt. There is an emerging interest in programmatic imitation learning (PIL), which offers significant promise in addressing the above limitations. In PIL, the learned policy is represented in a programming language, making it amenable to interpretation and repair. However, state-of-the-art PIL algorithms assume access to action labels and struggle to learn from noisy real-world demonstrations. In this paper, we propose PLUNDER, a novel PIL algorithm that integrates a probabilistic program synthesizer in an iterative Expectation-Maximization (EM) framework to address these shortcomings. Unlike existing PIL approaches, PLUNDER synthesizes probabilistic programmatic policies that are particularly well-suited for modeling the uncertainties inherent in real-world demonstrations. Our approach leverages an EM loop to simultaneously infer the missing action labels and the most likely probabilistic policy. We benchmark PLUNDER against several established IL techniques, and demonstrate its superiority across five challenging imitation learning tasks under noise. PLUNDER policies achieve 95% accuracy in matching the given demonstrations, outperforming the next best baseline by 19%. Additionally, policies generated by PLUNDER successfully complete the tasks 17% more frequently than the nearest baseline.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

北京阿比特科技有限公司