How could quantum cryptography help us achieve what are not achievable in classical cryptography? In this work we consider the following problem, which we call succinct RSPV for classical functions (SRC). Suppose $f$ is a function described by a polynomial time classical Turing machine, which is public; the client would like to sample a random $x$ as the function input and use a protocol to send $f(x)$ to the server. What's more, (1) when the server is malicious, what it knows in the passing space should be no more than $f(x)$; (2) the communication should be succinct (that is, independent to the running time of evaluating $f$). Solving this problem in classical cryptography seems to require strong cryptographic assumptions. We show that, perhaps surprisingly, it's possible to solve this problem with quantum techniques under much weaker assumptions. By allowing for quantum communication and computations, we give a protocol for this problem assuming only collapsing hash functions [Unr16]. Our work conveys an interesting message that quantum cryptography could outperform classical cryptography in a new type of problems, that is, to reduce communications in meaningful primitives without using heavy classical cryptographic assumptions.
Recent studies try to use hyperspectral imaging (HSI) to detect foreign matters in products because it enables to visualize the invisible wavelengths including ultraviolet and infrared. Considering the enormous image channels of the HSI, several dimension reduction methods-e.g., PCA or UMAP-can be considered to reduce but those cannot ease the fundamental limitations, as follows: (1) latency of HSI capturing. (2) less explanation ability of the important channels. In this paper, to circumvent the aforementioned methods, one of the ways to channel reduction, on anomaly detection proposed HSI. Different from feature extraction methods (i.e., PCA or UMAP), feature selection can sort the feature by impact and show better explainability so we might redesign the task-optimized and cost-effective spectroscopic camera. Via the extensive experiment results with synthesized MVTec AD dataset, we confirm that the feature selection method shows 6.90x faster at the inference phase compared with feature extraction-based approaches while preserving anomaly detection performance. Ultimately, we conclude the advantage of feature selection which is effective yet fast.
Distance measures between graphs are important primitives for a variety of learning tasks. In this work, we describe an unsupervised, optimal transport based approach to define a distance between graphs. Our idea is to derive representations of graphs as Gaussian mixture models, fitted to distributions of sampled node embeddings over the same space. The Wasserstein distance between these Gaussian mixture distributions then yields an interpretable and easily computable distance measure, which can further be tailored for the comparison at hand by choosing appropriate embeddings. We propose two embeddings for this framework and show that under certain assumptions about the shape of the resulting Gaussian mixture components, further computational improvements of this Wasserstein distance can be achieved. An empirical validation of our findings on synthetic data and real-world Functional Brain Connectivity networks shows promising performance compared to existing embedding methods.
To resolve the semantic ambiguity in texts, we propose a model, which innovatively combines a knowledge graph with an improved attention mechanism. An existing knowledge base is utilized to enrich the text with relevant contextual concepts. The model operates at both character and word levels to deepen its understanding by integrating the concepts. We first adopt information gain to select import words. Then an encoder-decoder framework is used to encode the text along with the related concepts. The local attention mechanism adjusts the weight of each concept, reducing the influence of irrelevant or noisy concepts during classification. We improve the calculation formula for attention scores in the local self-attention mechanism, ensuring that words with different frequencies of occurrence in the text receive higher attention scores. Finally, the model employs a Bi-directional Gated Recurrent Unit (Bi-GRU), which is effective in feature extraction from texts for improved classification accuracy. Its performance is demonstrated on datasets such as AGNews, Ohsumed, and TagMyNews, achieving accuracy of 75.1%, 58.7%, and 68.5% respectively, showing its effectiveness in classifying tasks.
In this work, we propose to utilize a variational autoencoder (VAE) for channel estimation (CE) in underdetermined (UD) systems. The basis of the method forms a recently proposed concept in which a VAE is trained on channel state information (CSI) data and used to parameterize an approximation to the mean squared error (MSE)-optimal estimator. The contributions in this work extend the existing framework from fully-determined (FD) to UD systems, which are of high practical relevance. Particularly noteworthy is the extension of the estimator variant, which does not require perfect CSI during its offline training phase. This is a significant advantage compared to most other deep learning (DL)-based CE methods, where perfect CSI during the training phase is a crucial prerequisite. Numerical simulations for hybrid and wideband systems demonstrate the excellent performance of the proposed methods compared to related estimators.
In this paper we show how tensor networks help in developing explainability of machine learning algorithms. Specifically, we develop an unsupervised clustering algorithm based on Matrix Product States (MPS) and apply it in the context of a real use-case of adversary-generated threat intelligence. Our investigation proves that MPS rival traditional deep learning models such as autoencoders and GANs in terms of performance, while providing much richer model interpretability. Our approach naturally facilitates the extraction of feature-wise probabilities, Von Neumann Entropy, and mutual information, offering a compelling narrative for classification of anomalies and fostering an unprecedented level of transparency and interpretability, something fundamental to understand the rationale behind artificial intelligence decisions.
We propose two extensions to existing importance sampling based methods for lossy compression. First, we introduce an importance sampling based compression scheme that is a variant of ordered random coding (Theis and Ahmed, 2022) and is amenable to direct evaluation of the achievable compression rate for a finite number of samples. Our second and major contribution is the importance matching lemma, which is a finite proposal counterpart of the recently introduced Poisson matching lemma (Li and Anantharam, 2021). By integrating with deep learning, we provide a new coding scheme for distributed lossy compression with side information at the decoder. We demonstrate the effectiveness of the proposed scheme through experiments involving synthetic Gaussian sources, distributed image compression with MNIST and vertical federated learning with CIFAR-10.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.
How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.