亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Researchers are often interested in learning not only the effect of treatments on outcomes, but also the pathways through which these effects operate. A mediator is a variable that is affected by treatment and subsequently affects outcome. Existing methods for penalized mediation analyses either assume that finite-dimensional linear models are sufficient to remove confounding bias, or perform no confounding control at all. In practice, these assumptions may not hold. We propose a method that considers the confounding functions as nuisance parameters to be estimated using data-adaptive methods. We then use a novel regularization method applied to this objective function to identify a set of important mediators. We derive the asymptotic properties of our estimator and establish the oracle property under certain assumptions. Asymptotic results are also presented in a local setting which contrast the proposal with the standard adaptive lasso. We also propose a perturbation bootstrap technique to provide asymptotically valid post-selection inference for the mediated effects of interest. The performance of these methods will be discussed and demonstrated through simulation studies.

相關內容

Longitudinal and survival sub-models are two building blocks for joint modelling of longitudinal and time to event data. Extensive research indicates separate analysis of these two processes could result in biased outputs due to their associations. Conditional independence between measurements of biomarkers and event time process given latent classes or random effects is a common approach for characterising the association between the two sub-models while taking the heterogeneity among the population into account. However, this assumption is tricky to validate because of the unobservable latent variables. Thus a Gaussian copula joint model with random effects is proposed to accommodate the scenarios where the conditional independence assumption is questionable. In our proposed model, the conventional joint model assuming conditional independence is a special case when the association parameter in the Gaussian copula shrinks to zero. Simulation studies and real data application are carried out to evaluate the performance of our proposed model. In addition, personalised dynamic predictions of survival probabilities are obtained based on the proposed model and comparisons are made to the predictions obtained under the conventional joint model.

Undertaking causal inference with observational data is incredibly useful across a wide range of tasks including the development of medical treatments, advertisements and marketing, and policy making. There are two significant challenges associated with undertaking causal inference using observational data: treatment assignment heterogeneity (\textit{i.e.}, differences between the treated and untreated groups), and an absence of counterfactual data (\textit{i.e.}, not knowing what would have happened if an individual who did get treatment, were instead to have not been treated). We address these two challenges by combining structured inference and targeted learning. In terms of structure, we factorize the joint distribution into risk, confounding, instrumental, and miscellaneous factors, and in terms of targeted learning, we apply a regularizer derived from the influence curve in order to reduce residual bias. An ablation study is undertaken, and an evaluation on benchmark datasets demonstrates that TVAE has competitive and state of the art performance.

In many applications, we are given access to noisy modulo samples of a smooth function with the goal being to robustly unwrap the samples, i.e., to estimate the original samples of the function. In a recent work, Cucuringu and Tyagi proposed denoising the modulo samples by first representing them on the unit complex circle and then solving a smoothness regularized least squares problem -- the smoothness measured w.r.t the Laplacian of a suitable proximity graph $G$ -- on the product manifold of unit circles. This problem is a quadratically constrained quadratic program (QCQP) which is nonconvex, hence they proposed solving its sphere-relaxation leading to a trust region subproblem (TRS). In terms of theoretical guarantees, $\ell_2$ error bounds were derived for (TRS). These bounds are however weak in general and do not really demonstrate the denoising performed by (TRS). In this work, we analyse the (TRS) as well as an unconstrained relaxation of (QCQP). For both these estimators we provide a refined analysis in the setting of Gaussian noise and derive noise regimes where they provably denoise the modulo observations w.r.t the $\ell_2$ norm. The analysis is performed in a general setting where $G$ is any connected graph.

We consider a randomized controlled trial between two groups. The objective is to identify a population with characteristics such that the test therapy is more effective than the control therapy. Such a population is called a subgroup. This identification can be made by estimating the treatment effect and identifying interactions between treatments and covariates. To date, many methods have been proposed to identify subgroups for a single outcome. There are also multiple outcomes, but they are difficult to interpret and cannot be applied to outcomes other than continuous values. In this paper, we propose a multivariate regression method that introduces latent variables to estimate the treatment effect on multiple outcomes simultaneously. The proposed method introduces latent variables and adds Lasso sparsity constraints to the estimated loadings to facilitate the interpretation of the relationship between outcomes and covariates. The framework of the generalized linear model makes it applicable to various types of outcomes. Interpretation of subgroups is made by visualizing treatment effects and latent variables. This allows us to identify subgroups with characteristics that make the test therapy more effective for multiple outcomes. Simulation and real data examples demonstrate the effectiveness of the proposed method.

Unbiased and consistent variance estimators generally do not exist for design-based treatment effect estimators because experimenters never observe more than one potential outcome for any unit. The problem is exacerbated by interference and complex experimental designs. In this paper, we consider variance estimation for linear treatment effect estimators under interference and arbitrary experimental designs. Experimenters must accept conservative estimators in this setting, but they can strive to minimize the conservativeness. We show that this task can be interpreted as an optimization problem in which one aims to find the lowest estimable upper bound of the true variance given one's risk preference and knowledge of the potential outcomes. We characterize the set of admissible bounds in the class of quadratic forms, and we demonstrate that the optimization problem is a convex program for many natural objectives. This allows experimenters to construct less conservative variance estimators, making inferences about treatment effects more informative. The resulting estimators are guaranteed to be conservative regardless of whether the background knowledge used to construct the bound is correct, but the estimators are less conservative if the knowledge is reasonably accurate.

This paper investigates the estimation and inference of the average treatment effect (ATE) using deep neural networks (DNNs) in the potential outcomes framework. Under some regularity conditions, the observed response can be formulated as the response of a mean regression problem with both the confounding variables and the treatment indicator as the independent variables. Using such formulation, we investigate two methods for ATE estimation and inference based on the estimated mean regression function via DNN regression using a specific network architecture. We show that both DNN estimates of ATE are consistent with dimension-free consistency rates under some assumptions on the underlying true mean regression model. Our model assumptions accommodate the potentially complicated dependence structure of the observed response on the covariates, including latent factors and nonlinear interactions between the treatment indicator and confounding variables. We also establish the asymptotic normality of our estimators based on the idea of sample splitting, ensuring precise inference and uncertainty quantification. Simulation studies and real data application justify our theoretical findings and support our DNN estimation and inference methods.

Active inference is a unifying theory for perception and action resting upon the idea that the brain maintains an internal model of the world by minimizing free energy. From a behavioral perspective, active inference agents can be seen as self-evidencing beings that act to fulfill their optimistic predictions, namely preferred outcomes or goals. In contrast, reinforcement learning requires human-designed rewards to accomplish any desired outcome. Although active inference could provide a more natural self-supervised objective for control, its applicability has been limited because of the shortcomings in scaling the approach to complex environments. In this work, we propose a contrastive objective for active inference that strongly reduces the computational burden in learning the agent's generative model and planning future actions. Our method performs notably better than likelihood-based active inference in image-based tasks, while also being computationally cheaper and easier to train. We compare to reinforcement learning agents that have access to human-designed reward functions, showing that our approach closely matches their performance. Finally, we also show that contrastive methods perform significantly better in the case of distractors in the environment and that our method is able to generalize goals to variations in the background.

Discovering causal structure among a set of variables is a fundamental problem in many empirical sciences. Traditional score-based casual discovery methods rely on various local heuristics to search for a Directed Acyclic Graph (DAG) according to a predefined score function. While these methods, e.g., greedy equivalence search, may have attractive results with infinite samples and certain model assumptions, they are usually less satisfactory in practice due to finite data and possible violation of assumptions. Motivated by recent advances in neural combinatorial optimization, we propose to use Reinforcement Learning (RL) to search for the DAG with the best scoring. Our encoder-decoder model takes observable data as input and generates graph adjacency matrices that are used to compute rewards. The reward incorporates both the predefined score function and two penalty terms for enforcing acyclicity. In contrast with typical RL applications where the goal is to learn a policy, we use RL as a search strategy and our final output would be the graph, among all graphs generated during training, that achieves the best reward. We conduct experiments on both synthetic and real datasets, and show that the proposed approach not only has an improved search ability but also allows a flexible score function under the acyclicity constraint.

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

北京阿比特科技有限公司