Nonparametric estimates of frequency response functions (FRFs) are often suitable for describing the dynamics of a mechanical system. If treating these estimates as measurement inputs, they can be used for parametric identification of, e.g., a gray-box model. Classical methods for nonparametric FRF estimation of MIMO systems require at least as many experiments as the system has inputs. Local parametric FRF estimation methods have been developed for avoiding multiple experiments. In this paper, these local methods are adapted and applied for estimating the FRFs of a 6-axes robotic manipulator, which is a nonlinear MIMO system operating in closed loop. The aim is to reduce the experiment time and amount of data needed for identification. The resulting FRFs are analyzed in an experimental study and compared to estimates obtained by classical MIMO techniques. It is furthermore shown that an accurate parametric model identification is possible based on local parametric FRF estimates and that the total experiment time can be significantly reduced.
Bayesian model updating facilitates the calibration of analytical models based on observations and the quantification of uncertainties in model parameters such as stiffness and mass. This process significantly enhances damage assessment and response predictions in existing civil structures. Predominantly, current methods employ modal properties identified from acceleration measurements to evaluate the likelihood of the model parameters. This modal analysis-based likelihood generally involves a prior assumption regarding the mass parameters. In civil structures, accurately determining mass parameters proves challenging owing to the time-varying nature of imposed loads. The resulting inaccuracy potentially introduces biases while estimating the stiffness parameters, which affects the assessment of structural response and associated damage. Addressing this issue, the present study introduces a stress-resultant-based approach for Bayesian model updating independent of mass assumptions. This approach utilizes system identification on strain and acceleration measurements to establish the relationship between nodal displacements and elemental stress resultants. Employing static analysis to depict this relationship aids in assessing the likelihood of stiffness parameters. Integrating this static-analysis-based likelihood with a modal-analysis-based likelihood facilitates the simultaneous estimation of mass and stiffness parameters. The proposed approach was validated using numerical examples on a planar frame and experimental studies on a full-scale moment-resisting steel frame structure.
The laws of model size, data volume, computation and model performance have been extensively studied in the field of Natural Language Processing (NLP). However, the scaling laws in Optical Character Recognition (OCR) have not yet been investigated. To address this, we conducted comprehensive studies that involved examining the correlation between performance and the scale of models, data volume and computation in the field of text recognition.Conclusively, the study demonstrates smooth power laws between performance and model size, as well as training data volume, when other influencing factors are held constant. Additionally, we have constructed a large-scale dataset called REBU-Syn, which comprises 6 million real samples and 18 million synthetic samples. Based on our scaling law and new dataset, we have successfully trained a scene text recognition model, achieving a new state-ofthe-art on 6 common test benchmarks with a top-1 average accuracy of 97.42%. The models and dataset are publicly available at //github.com/large-ocr-model/large-ocr-model.github.io.
Coding theory revolves around the incorporation of redundancy into transmitted symbols, computation tasks, and stored data to guard against adversarial manipulation. However, error correction in coding theory is contingent upon a strict trust assumption. In the context of computation and storage, it is required that honest nodes outnumber adversarial ones by a certain margin. However, in several emerging real-world cases, particularly, in decentralized blockchain-oriented applications, such assumptions are often unrealistic. Consequently, despite the important role of coding in addressing significant challenges within decentralized systems, its applications become constrained. Still, in decentralized platforms, a distinctive characteristic emerges, offering new avenues for secure coding beyond the constraints of conventional methods. In these scenarios, the adversary benefits when the legitimate decoder recovers the data, and preferably with a high estimation error. This incentive motivates them to act rationally, trying to maximize their gains. In this paper, we propose a game theoretic formulation, called game of coding, that captures this unique dynamic where each of the adversary and the data collector (decoder) have a utility function to optimize. The utility functions reflect the fact that both the data collector and the adversary are interested to increase the chance of data being recoverable at the data collector. Moreover, the utility functions express the interest of the data collector to estimate the input with lower estimation error, but the opposite interest of the adversary. As a first, still highly non-trivial step, we characterize the equilibrium of the game for the repetition code with repetition factor of 2, for a wide class of utility functions with minimal assumptions.
Since the introduction of DeepMimic [Peng et al. 2018], subsequent research has focused on expanding the repertoire of simulated motions across various scenarios. In this study, we propose an alternative approach for this goal, a deep reinforcement learning method based on the simulation of a single-rigid-body character. Using the centroidal dynamics model (CDM) to express the full-body character as a single rigid body (SRB) and training a policy to track a reference motion, we can obtain a policy that is capable of adapting to various unobserved environmental changes and controller transitions without requiring any additional learning. Due to the reduced dimension of state and action space, the learning process is sample-efficient. The final full-body motion is kinematically generated in a physically plausible way, based on the state of the simulated SRB character. The SRB simulation is formulated as a quadratic programming (QP) problem, and the policy outputs an action that allows the SRB character to follow the reference motion. We demonstrate that our policy, efficiently trained within 30 minutes on an ultraportable laptop, has the ability to cope with environments that have not been experienced during learning, such as running on uneven terrain or pushing a box, and transitions between learned policies, without any additional learning.
Given that no existing graph construction method can generate a perfect graph for a given dataset, graph-based algorithms are invariably affected by the plethora of redundant and erroneous edges present within the constructed graphs. In this paper, we propose treating these noisy edges as adversarial attack and use a spectral adversarial robustness evaluation method to diminish the impact of noisy edges on the performance of graph algorithms. Our method identifies those points that are less vulnerable to noisy edges and leverages only these robust points to perform graph-based algorithms. Our experiments with spectral clustering, one of the most representative and widely utilized graph algorithms, reveal that our methodology not only substantially elevates the precision of the algorithm but also greatly accelerates its computational efficiency by leveraging only a select number of robust data points.
The assumption that data are invariant under the action of a compact group is implicit in many statistical modeling assumptions such as normality, or the assumption of independence and identical distributions. Hence, testing for the presence of such invariances offers a principled way to falsify various statistical models. In this article, we develop sequential, anytime-valid tests of distributional symmetry under the action of general compact groups. The tests that are developed allow for the continuous monitoring of data as it is collected while keeping type-I error guarantees, and include tests for exchangeability and rotational symmetry as special examples. The main tool to this end is the machinery developed for conformal prediction. The resulting test statistic, called a conformal martingale, can be interpreted as a likelihood ratio. We use this interpretation to show that the test statistics are optimal -- in a specific log-optimality sense -- against certain alternatives. Furthermore, we draw a connection between conformal prediction, anytime-valid tests of distributional invariance, and current developments on anytime-valid testing. In particular, we extend existing anytime-valid tests of independence, which leverage exchangeability, to work under general group invariances. Additionally, we discuss testing for invariance under subgroups of the permutation group and orthogonal group, the latter of which corresponds to testing the assumptions behind linear regression models.
We present a numerical discretisation of the coupled moment systems, previously introduced in Dahm and Helzel, which approximate the kinetic multi-scale model by Helzel and Tzavaras for sedimentation in suspensions of rod-like particles for a two-dimensional flow problem and a shear flow problem. We use a splitting ansatz which, during each time step, separately computes the update of the macroscopic flow equation and of the moment system. The proof of the hyperbolicity of the moment systems in \cite{Dahm} suggests solving the moment systems with standard numerical methods for hyperbolic problems, like LeVeque's Wave Propagation Algorithm \cite{LeV}. The number of moment equations used in the hyperbolic moment system can be adapted to locally varying flow features. An error analysis is proposed, which compares the approximation with $2N+1$ moment equations to an approximation with $2N+3$ moment equations. This analysis suggests an error indicator which can be computed from the numerical approximation of the moment system with $2N+1$ moment equations. In order to use moment approximations with a different number of moment equations in different parts of the computational domain, we consider an interface coupling of moment systems with different resolution. Finally, we derive a conservative high-resolution Wave Propagation Algorithm for solving moment systems with different numbers of moment equations.
Markov processes are widely used mathematical models for describing dynamic systems in various fields. However, accurately simulating large-scale systems at long time scales is computationally expensive due to the short time steps required for accurate integration. In this paper, we introduce an inference process that maps complex systems into a simplified representational space and models large jumps in time. To achieve this, we propose Time-lagged Information Bottleneck (T-IB), a principled objective rooted in information theory, which aims to capture relevant temporal features while discarding high-frequency information to simplify the simulation task and minimize the inference error. Our experiments demonstrate that T-IB learns information-optimal representations for accurately modeling the statistical properties and dynamics of the original process at a selected time lag, outperforming existing time-lagged dimensionality reduction methods.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.