Audiovisual segmentation (AVS) is a challenging task that aims to segment visual objects in videos according to their associated acoustic cues. With multiple sound sources and background disturbances involved, establishing robust correspondences between audio and visual contents poses unique challenges due to (1) complex entanglement across sound sources and (2) frequent changes in the occurrence of distinct sound events. Assuming sound events occur independently, the multi-source semantic space can be represented as the Cartesian product of single-source sub-spaces. We are motivated to decompose the multi-source audio semantics into single-source semantics for more effective interactions with visual content. We propose a semantic decomposition method based on product quantization, where the multi-source semantics can be decomposed and represented by several disentangled and noise-suppressed single-source semantics. Furthermore, we introduce a global-to-local quantization mechanism, which distills knowledge from stable global (clip-level) features into local (frame-level) ones, to handle frequent changes in audio semantics. Extensive experiments demonstrate that our semantically decomposed audio representation significantly improves AVS performance, e.g., +21.2% mIoU on the challenging AVS-Semantic benchmark with ResNet50 backbone. //github.com/lxa9867/QSD.
Interacting and understanding with text heavy visual content with multiple images is a major challenge for traditional vision models. This paper is on enhancing vision models' capability to comprehend or understand and learn from images containing a huge amount of textual information from the likes of textbooks and research papers which contain multiple images like graphs, etc and tables in them with different types of axes and scales. The approach involves dataset preprocessing, fine tuning which is by using instructional oriented data and evaluation. We also built a visual chat application integrating CLIP for image encoding and a model from the Massive Text Embedding Benchmark which is developed to consider both textual and visual inputs. An accuracy of 96.71% was obtained. The aim of the project is to increase and also enhance the advance vision models' capabilities in understanding complex visual textual data interconnected data, contributing to multimodal AI.
Human Mesh Recovery (HMR) from a single RGB image is a highly ambiguous problem, as similar 2D projections can correspond to multiple 3D interpretations. Nevertheless, most HMR methods overlook this ambiguity and make a single prediction without accounting for the associated uncertainty. A few approaches generate a distribution of human meshes, enabling the sampling of multiple predictions; however, none of them is competitive with the latest single-output model when making a single prediction. This work proposes a new approach based on masked generative modeling. By tokenizing the human pose and shape, we formulate the HMR task as generating a sequence of discrete tokens conditioned on an input image. We introduce MEGA, a MaskEd Generative Autoencoder trained to recover human meshes from images and partial human mesh token sequences. Given an image, our flexible generation scheme allows us to predict a single human mesh in deterministic mode or to generate multiple human meshes in stochastic mode. MEGA enables us to propose multiple outputs and to evaluate the uncertainty of the predictions. Experiments on in-the-wild benchmarks show that MEGA achieves state-of-the-art performance in deterministic and stochastic modes, outperforming single-output and multi-output approaches.
Expressive speech-to-speech translation (S2ST) is a key research topic in seamless communication, which focuses on the preservation of semantics and speaker vocal style in translated speech. Early works synthesized speaker style aligned speech in order to directly learn the mapping from speech to target speech spectrogram. Without reliance on style aligned data, recent studies leverage the advances of language modeling (LM) and build cascaded LMs on semantic and acoustic tokens. This work proposes SeamlessExpressiveLM, a single speech language model for expressive S2ST. We decompose the complex source-to-target speech mapping into intermediate generation steps with chain-of-thought prompting. The model is first guided to translate target semantic content and then transfer the speaker style to multi-stream acoustic units. Evaluated on Spanish-to-English and Hungarian-to-English translations, SeamlessExpressiveLM outperforms cascaded LMs in both semantic quality and style transfer, meanwhile achieving better parameter efficiency.
Video text spotting aims to simultaneously localize, recognize and track text instances in videos. To address the limited recognition capability of end-to-end methods, tracking the zero-shot results of state-of-the-art image text spotters directly can achieve impressive performance. However, owing to the domain gap between different datasets, these methods usually obtain limited tracking trajectories on extreme dataset. Fine-tuning transformer-based text spotters on specific datasets could yield performance enhancements, albeit at the expense of considerable training resources. In this paper, we propose a Language Collaboration and Glyph Perception Model, termed LOGO to enhance the performance of conventional text spotters through the integration of a synergy module. To achieve this goal, a language synergy classifier (LSC) is designed to explicitly discern text instances from background noise in the recognition stage. Specially, the language synergy classifier can output text content or background code based on the legibility of text regions, thus computing language scores. Subsequently, fusion scores are computed by taking the average of detection scores and language scores, and are utilized to re-score the detection results before tracking. By the re-scoring mechanism, the proposed LSC facilitates the detection of low-resolution text instances while filtering out text-like regions. Besides, the glyph supervision and visual position mixture module are proposed to enhance the recognition accuracy of noisy text regions, and acquire more discriminative tracking features, respectively. Extensive experiments on public benchmarks validate the effectiveness of the proposed method.
Large Vision Language Models (LVLMs) have shown remarkable capabilities in multimodal tasks like visual question answering or image captioning. However, inconsistencies between the visual information and the generated text, a phenomenon referred to as hallucinations, remain an unsolved problem with regard to the trustworthiness of LVLMs. To address this problem, recent works proposed to incorporate computationally costly Large (Vision) Language Models in order to detect hallucinations on a sentence- or subsentence-level. In this work, we introduce MetaToken, a lightweight binary classifier to detect hallucinations on the token-level at negligible cost. Based on a statistical analysis, we reveal key factors of hallucinations in LVLMs which have been overseen in previous works. MetaToken can be applied to any open-source LVLM without any knowledge about ground truth data providing a reliable detection of hallucinations. We evaluate our method on four state-of-the-art LVLMs demonstrating the effectiveness of our approach.
Recently, Vision Transformers (ViTs) have shown competitive performance on image recognition while requiring less vision-specific inductive biases. In this paper, we investigate if such performance can be extended to image generation. To this end, we integrate the ViT architecture into generative adversarial networks (GANs). For ViT discriminators, we observe that existing regularization methods for GANs interact poorly with self-attention, causing serious instability during training. To resolve this issue, we introduce several novel regularization techniques for training GANs with ViTs. For ViT generators, we examine architectural choices for latent and pixel mapping layers to facilitate convergence. Empirically, our approach, named ViTGAN, achieves comparable performance to the leading CNN-based GAN models on three datasets: CIFAR-10, CelebA, and LSUN bedroom.
Event data captured by Dynamic Vision Sensors (DVS) offers a unique approach to visual processing that differs from traditional video capture, showcasing its efficiency in dynamic and real-time scenarios. Despite advantages such as high temporal resolution and low energy consumption, the application of event data faces challenges due to limited dataset size and diversity. To address this, we developed EventZoom -- a data augmentation strategy specifically designed for event data. EventZoom employs a progressive temporal strategy that intelligently blends time and space to enhance the diversity and complexity of the data while maintaining its authenticity. This method aims to improve the quality of data for model training and enhance the adaptability and robustness of algorithms in handling complex dynamic scenes. We have experimentally validated EventZoom across various supervised learning frameworks, including supervised, semi-supervised, and unsupervised learning. Our results demonstrate that EventZoom consistently outperforms other data augmentation methods, confirming its effectiveness and applicability as a powerful event-based data augmentation tool in diverse learning settings.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.
Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.