Current AI regulations require discarding sensitive features (e.g., gender, race, religion) in the algorithm's decision-making process to prevent unfair outcomes. However, even without sensitive features in the training set, algorithms can persist in discrimination. Indeed, when sensitive features are omitted (fairness under unawareness), they could be inferred through non-linear relations with the so called proxy features. In this work, we propose a way to reveal the potential hidden bias of a machine learning model that can persist even when sensitive features are discarded. This study shows that it is possible to unveil whether the black-box predictor is still biased by exploiting counterfactual reasoning. In detail, when the predictor provides a negative classification outcome, our approach first builds counterfactual examples for a discriminated user category to obtain a positive outcome. Then, the same counterfactual samples feed an external classifier (that targets a sensitive feature) that reveals whether the modifications to the user characteristics needed for a positive outcome moved the individual to the non-discriminated group. When this occurs, it could be a warning sign for discriminatory behavior in the decision process. Furthermore, we leverage the deviation of counterfactuals from the original sample to determine which features are proxies of specific sensitive information. Our experiments show that, even if the model is trained without sensitive features, it often suffers discriminatory biases.
Knowledge-grounded dialogue generation aims to mitigate the issue of text degeneration by incorporating external knowledge to supplement the context. However, the model often fails to internalize this information into responses in a human-like manner. Instead, it simply inserts segments of the provided knowledge into generic responses. As a result, the generated responses tend to be tedious, incoherent, and in lack of interactivity which means the degeneration problem is still unsolved. In this work, we first find that such copying-style degeneration is primarily due to the weak likelihood objective, which allows the model to "cheat" the objective by merely duplicating knowledge segments in a superficial pattern matching based on overlap. To overcome this challenge, we then propose a Multi-level Adaptive Contrastive Learning (MACL) framework that dynamically samples negative examples and subsequently penalizes degeneration behaviors at both the token-level and sequence-level. Extensive experiments on the WoW dataset demonstrate the effectiveness of our approach across various pre-trained models.
Large Language models (LLMs) possess the capability to engage In-context Learning (ICL) by leveraging a few demonstrations pertaining to a new downstream task as conditions. However, this particular learning paradigm suffers from high instability stemming from substantial variances induced by factors such as the input distribution of selected examples, their ordering, and prompt formats. In this work, we demonstrate that even when all these factors are held constant, the random selection of examples still results in high variance. Consequently, we aim to explore the informative ability of data examples by quantifying the Information Gain (IG) obtained in prediction after observing a given example candidate. Then we propose to sample those with maximum IG. Additionally, we identify the presence of template bias, which can lead to unfair evaluations of IG during the sampling process. To mitigate this bias, we introduce Calibration Before Sampling strategy. The experimental results illustrate that our proposed method can yield an average relative improvement of 14.3% across six classification tasks using three LLMs.
In the literature on Kleene algebra, a number of variants have been proposed which impose additional structure specified by a theory, such as Kleene algebra with tests (KAT) and the recent Kleene algebra with observations (KAO), or make specific assumptions about certain constants, as for instance in NetKAT. Many of these variants fit within the unifying perspective offered by Kleene algebra with hypotheses, which comes with a canonical language model constructed from a given set of hypotheses. For the case of KAT, this model corresponds to the familiar interpretation of expressions as languages of guarded strings. A relevant question therefore is whether Kleene algebra together with a given set of hypotheses is complete with respect to its canonical language model. In this paper, we revisit, combine and extend existing results on this question to obtain tools for proving completeness in a modular way. We showcase these tools by giving new and modular proofs of completeness for KAT, KAO and NetKAT, and we prove completeness for new variants of KAT: KAT extended with a constant for the full relation, KAT extended with a converse operation, and a version of KAT where the collection of tests only forms a distributive lattice.
Case-based reasoning (CBR) as a methodology for problem-solving can use any appropriate computational technique. This position paper argues that CBR researchers have somewhat overlooked recent developments in deep learning and large language models (LLMs). The underlying technical developments that have enabled the recent breakthroughs in AI have strong synergies with CBR and could be used to provide a persistent memory for LLMs to make progress towards Artificial General Intelligence.
Despite the recent advances in abstractive text summarization, current summarization models still suffer from generating factually inconsistent summaries, reducing their utility for real-world application. We argue that the main reason for such behavior is that the summarization models trained with maximum likelihood objective assign high probability to plausible sequences given the context, but they often do not accurately rank sequences by their consistency. In this work, we solve this problem by calibrating the likelihood of model generated sequences to better align with a consistency metric measured by natural language inference (NLI) models. The human evaluation study and automatic metrics show that the calibrated models generate more consistent and higher-quality summaries. We also show that the models trained using our method return probabilities that are better aligned with the NLI scores, which significantly increase reliability of summarization models.
We study core-set construction algorithms for the task of Diversity Maximization under fairness/partition constraint. Given a set of points $P$ in a metric space partitioned into $m$ groups, and given $k_1,\ldots,k_m$, the goal of this problem is to pick $k_i$ points from each group $i$ such that the overall diversity of the $k=\sum_i k_i$ picked points is maximized. We consider two natural diversity measures: sum-of-pairwise distances and sum-of-nearest-neighbor distances, and show improved core-set construction algorithms with respect to these measures. More precisely, we show the first constant factor core-set w.r.t. sum-of-pairwise distances whose size is independent of the size of the dataset and the aspect ratio. Second, we show the first core-set w.r.t. the sum-of-nearest-neighbor distances. Finally, we run several experiments showing the effectiveness of our core-set approach. In particular, we apply constrained diversity maximization to summarize a set of timed messages that takes into account the messages' recency. Specifically, the summary should include more recent messages compared to older ones. This is a real task in one of the largest communication platforms, affecting the experience of hundreds of millions daily active users. By utilizing our core-set method for this task, we achieve a 100x speed-up while losing the diversity by only a few percent. Moreover, our approach allows us to improve the space usage of the algorithm in the streaming setting.
We propose an approach utilizing gamma-distributed random variables, coupled with log-Gaussian modeling, to generate synthetic datasets suitable for training neural networks. This addresses the challenge of limited real observations in various applications. We apply this methodology to both Raman and coherent anti-Stokes Raman scattering (CARS) spectra, using experimental spectra to estimate gamma process parameters. Parameter estimation is performed using Markov chain Monte Carlo methods, yielding a full Bayesian posterior distribution for the model which can be sampled for synthetic data generation. Additionally, we model the additive and multiplicative background functions for Raman and CARS with Gaussian processes. We train two Bayesian neural networks to estimate parameters of the gamma process which can then be used to estimate the underlying Raman spectrum and simultaneously provide uncertainty through the estimation of parameters of a probability distribution. We apply the trained Bayesian neural networks to experimental Raman spectra of phthalocyanine blue, aniline black, naphthol red, and red 264 pigments and also to experimental CARS spectra of adenosine phosphate, fructose, glucose, and sucrose. The results agree with deterministic point estimates for the underlying Raman and CARS spectral signatures.
Across a wide array of disciplines, many researchers use machine learning (ML) algorithms to identify a subgroup of individuals, called exceptional responders, who are likely to be helped by a treatment the most. A common approach consists of two steps. One first estimates the conditional average treatment effect or its proxy using an ML algorithm. They then determine the cutoff of the resulting treatment prioritization score to select those predicted to benefit most from the treatment. Unfortunately, these estimated treatment prioritization scores are often biased and noisy. Furthermore, utilizing the same data to both choose a cutoff value and estimate the average treatment effect among the selected individuals suffer from a multiple testing problem. To address these challenges, we develop a uniform confidence band for experimentally evaluating the sorted average treatment effect (GATES) among the individuals whose treatment prioritization score is at least as high as any given quantile value, regardless of how the quantile is chosen. This provides a statistical guarantee that the GATES for the selected subgroup exceeds a certain threshold. The validity of the proposed methodology depends solely on randomization of treatment and random sampling of units without requiring modeling assumptions or resampling methods. This widens its applicability including a wide range of other causal quantities. A simulation study shows that the empirical coverage of the proposed uniform confidence bands is close to the nominal coverage when the sample is as small as 100. We analyze a clinical trial of late-stage prostate cancer and find a relatively large proportion of exceptional responders with a statistical performance guarantee.
Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.
We examine the problem of question answering over knowledge graphs, focusing on simple questions that can be answered by the lookup of a single fact. Adopting a straightforward decomposition of the problem into entity detection, entity linking, relation prediction, and evidence combination, we explore simple yet strong baselines. On the popular SimpleQuestions dataset, we find that basic LSTMs and GRUs plus a few heuristics yield accuracies that approach the state of the art, and techniques that do not use neural networks also perform reasonably well. These results show that gains from sophisticated deep learning techniques proposed in the literature are quite modest and that some previous models exhibit unnecessary complexity.