亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We advance the field of Parameter-Efficient Fine-Tuning (PEFT) with our novel multi-adapter method, OrchMoE, which capitalizes on modular skill architecture for enhanced forward transfer in neural networks. Unlike prior models that depend on explicit task identification inputs, OrchMoE automatically discerns task categories, streamlining the learning process. This is achieved through an integrated mechanism comprising an Automatic Task Classification module and a Task-Skill Allocation module, which collectively deduce task-specific classifications and tailor skill allocation matrices. Our extensive evaluations on the 'Super Natural Instructions' dataset, featuring 1,600 diverse instructional tasks, indicate that OrchMoE substantially outperforms comparable multi-adapter baselines in terms of both performance and sample utilization efficiency, all while operating within the same parameter constraints. These findings suggest that OrchMoE offers a significant leap forward in multi-task learning efficiency.

相關內容

Neural Radiance Fields (NeRF) have garnered remarkable success in novel view synthesis. Nonetheless, the task of generating high-quality images for novel views persists as a critical challenge. While the existing efforts have exhibited commendable progress, capturing intricate details, enhancing textures, and achieving superior Peak Signal-to-Noise Ratio (PSNR) metrics warrant further focused attention and advancement. In this work, we propose NeRF-VPT, an innovative method for novel view synthesis to address these challenges. Our proposed NeRF-VPT employs a cascading view prompt tuning paradigm, wherein RGB information gained from preceding rendering outcomes serves as instructive visual prompts for subsequent rendering stages, with the aspiration that the prior knowledge embedded in the prompts can facilitate the gradual enhancement of rendered image quality. NeRF-VPT only requires sampling RGB data from previous stage renderings as priors at each training stage, without relying on extra guidance or complex techniques. Thus, our NeRF-VPT is plug-and-play and can be readily integrated into existing methods. By conducting comparative analyses of our NeRF-VPT against several NeRF-based approaches on demanding real-scene benchmarks, such as Realistic Synthetic 360, Real Forward-Facing, Replica dataset, and a user-captured dataset, we substantiate that our NeRF-VPT significantly elevates baseline performance and proficiently generates more high-quality novel view images than all the compared state-of-the-art methods. Furthermore, the cascading learning of NeRF-VPT introduces adaptability to scenarios with sparse inputs, resulting in a significant enhancement of accuracy for sparse-view novel view synthesis. The source code and dataset are available at \url{//github.com/Freedomcls/NeRF-VPT}.

Analogy-making is central to human cognition, allowing us to adapt to novel situations -- an ability that current AI systems still lack. Most analogy datasets today focus on simple analogies (e.g., word analogies); datasets including complex types of analogies are typically manually curated and very small. We believe that this holds back progress in computational analogy. In this work, we design a data generation pipeline, ParallelPARC (Parallel Paragraph Creator) leveraging state-of-the-art Large Language Models (LLMs) to create complex, paragraph-based analogies, as well as distractors, both simple and challenging. We demonstrate our pipeline and create ProPara-Logy, a dataset of analogies between scientific processes. We publish a gold-set, validated by humans, and a silver-set, generated automatically. We test LLMs' and humans' analogy recognition in binary and multiple-choice settings, and found that humans outperform the best models (~13% gap) after a light supervision. We demonstrate that our silver-set is useful for training models. Lastly, we show challenging distractors confuse LLMs, but not humans. We hope our pipeline will encourage research in this emerging field.

We introduce CyberDemo, a novel approach to robotic imitation learning that leverages simulated human demonstrations for real-world tasks. By incorporating extensive data augmentation in a simulated environment, CyberDemo outperforms traditional in-domain real-world demonstrations when transferred to the real world, handling diverse physical and visual conditions. Regardless of its affordability and convenience in data collection, CyberDemo outperforms baseline methods in terms of success rates across various tasks and exhibits generalizability with previously unseen objects. For example, it can rotate novel tetra-valve and penta-valve, despite human demonstrations only involving tri-valves. Our research demonstrates the significant potential of simulated human demonstrations for real-world dexterous manipulation tasks. More details can be found at //cyber-demo.github.io

In this work, we introduce SureFED, a novel framework for byzantine robust federated learning. Unlike many existing defense methods that rely on statistically robust quantities, making them vulnerable to stealthy and colluding attacks, SureFED establishes trust using the local information of benign clients. SureFED utilizes an uncertainty aware model evaluation and introspection to safeguard against poisoning attacks. In particular, each client independently trains a clean local model exclusively using its local dataset, acting as the reference point for evaluating model updates. SureFED leverages Bayesian models that provide model uncertainties and play a crucial role in the model evaluation process. Our framework exhibits robustness even when the majority of clients are compromised, remains agnostic to the number of malicious clients, and is well-suited for non-IID settings. We theoretically prove the robustness of our algorithm against data and model poisoning attacks in a decentralized linear regression setting. Proof-of Concept evaluations on benchmark image classification data demonstrate the superiority of SureFED over the state of the art defense methods under various colluding and non-colluding data and model poisoning attacks.

General Matrix Multiply (GEMM) hardware, employing large arrays of multiply-accumulate (MAC) units, perform bulk of the computation in deep learning (DL). Recent trends have established 8-bit integer (INT8) as the most widely used precision for DL inference. This paper proposes a novel MAC design capable of dynamically exploiting bit sparsity (i.e., number of `0' bits within a binary value) in input data to achieve significant improvements on area, power and energy. The proposed architecture, called OzMAC (Omit-zero-MAC), skips over zeros within a binary input value and performs simple shift-and-add-based compute in place of expensive multipliers. We implement OzMAC in SystemVerilog and present post-synthesis performance-power-area (PPA) results using commercial TSMC N5 (5nm) process node. Using eight pretrained INT8 deep neural networks (DNNs) as benchmarks, we demonstrate the existence of high bit sparsity in real DNN workloads and show that 8-bit OzMAC improves all three metrics of area, power, and energy significantly by 21%, 70%, and 28%, respectively. Similar improvements are achieved when scaling data precisions (4, 8, 16 bits) and clock frequencies (0.5 GHz, 1 GHz, 1.5 GHz). For the 8-bit OzMAC, scaling its frequency to normalize the throughput relative to conventional MAC, it still achieves 30% improvement on both power and energy.

Inverse problems span across diverse fields. In medical contexts, computed tomography (CT) plays a crucial role in reconstructing a patient's internal structure, presenting challenges due to artifacts caused by inherently ill-posed inverse problems. Previous research advanced image quality via post-processing and deep unrolling algorithms but faces challenges, such as extended convergence times with ultra-sparse data. Despite enhancements, resulting images often show significant artifacts, limiting their effectiveness for real-world diagnostic applications. We aim to explore deep second-order unrolling algorithms for solving imaging inverse problems, emphasizing their faster convergence and lower time complexity compared to common first-order methods like gradient descent. In this paper, we introduce QN-Mixer, an algorithm based on the quasi-Newton approach. We use learned parameters through the BFGS algorithm and introduce Incept-Mixer, an efficient neural architecture that serves as a non-local regularization term, capturing long-range dependencies within images. To address the computational demands typically associated with quasi-Newton algorithms that require full Hessian matrix computations, we present a memory-efficient alternative. Our approach intelligently downsamples gradient information, significantly reducing computational requirements while maintaining performance. The approach is validated through experiments on the sparse-view CT problem, involving various datasets and scanning protocols, and is compared with post-processing and deep unrolling state-of-the-art approaches. Our method outperforms existing approaches and achieves state-of-the-art performance in terms of SSIM and PSNR, all while reducing the number of unrolling iterations required.

In this work, we present DeepEraser, an effective deep network for generic text removal. DeepEraser utilizes a recurrent architecture that erases the text in an image via iterative operations. Our idea comes from the process of erasing pencil script, where the text area designated for removal is subject to continuous monitoring and the text is attenuated progressively, ensuring a thorough and clean erasure. Technically, at each iteration, an innovative erasing module is deployed, which not only explicitly aggregates the previous erasing progress but also mines additional semantic context to erase the target text. Through iterative refinements, the text regions are progressively replaced with more appropriate content and finally converge to a relatively accurate status. Furthermore, a custom mask generation strategy is introduced to improve the capability of DeepEraser for adaptive text removal, as opposed to indiscriminately removing all the text in an image. Our DeepEraser is notably compact with only 1.4M parameters and trained in an end-to-end manner. To verify its effectiveness, extensive experiments are conducted on several prevalent benchmarks, including SCUT-Syn, SCUT-EnsText, and Oxford Synthetic text dataset. The quantitative and qualitative results demonstrate the effectiveness of our DeepEraser over the state-of-the-art methods, as well as its strong generalization ability in custom mask text removal. The codes and pre-trained models are available at //github.com/fh2019ustc/DeepEraser

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司