亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Ising machines are dedicated hardware solvers of NP-hard optimization problems. However, they do not always find the most optimal solution. The probability of finding this optimal solution depends on the problem at hand. Using continuation methods, we show that this is closely linked to the bifurcation sequence of the optimal solution. From this bifurcation analysis, we can determine the effectiveness of solution schemes. Moreover, we find that the proper choice of implementation of the Ising machine can drastically change this bifurcation sequence and therefore vastly increase the probability of finding the optimal solution.

相關內容

We describe a randomized algorithm for producing a near-optimal hierarchical off-diagonal low-rank (HODLR) approximation to an $n\times n$ matrix $\mathbf{A}$, accessible only though matrix-vector products with $\mathbf{A}$ and $\mathbf{A}^{\mathsf{T}}$. We prove that, for the rank-$k$ HODLR approximation problem, our method achieves a $(1+\beta)^{\log(n)}$-optimal approximation in expected Frobenius norm using $O(k\log(n)/\beta^3)$ matrix-vector products. In particular, the algorithm obtains a $(1+\varepsilon)$-optimal approximation with $O(k\log^4(n)/\varepsilon^3)$ matrix-vector products, and for any constant $c$, an $n^c$-optimal approximation with $O(k \log(n))$ matrix-vector products. Apart from matrix-vector products, the additional computational cost of our method is just $O(n \operatorname{poly}(\log(n), k, \beta))$. We complement the upper bound with a lower bound, which shows that any matrix-vector query algorithm requires at least $\Omega(k\log(n) + k/\varepsilon)$ queries to obtain a $(1+\varepsilon)$-optimal approximation. Our algorithm can be viewed as a robust version of widely used "peeling" methods for recovering HODLR matrices and is, to the best of our knowledge, the first matrix-vector query algorithm to enjoy theoretical worst-case guarantees for approximation by any hierarchical matrix class. To control the propagation of error between levels of hierarchical approximation, we introduce a new perturbation bound for low-rank approximation, which shows that the widely used Generalized Nystr\"om method enjoys inherent stability when implemented with noisy matrix-vector products. We also introduced a novel randomly perforated matrix sketching method to further control the error in the peeling algorithm.

In the field of autonomous driving research, the use of immersive virtual reality (VR) techniques is widespread to enable a variety of studies under safe and controlled conditions. However, this methodology is only valid and consistent if the conduct of participants in the simulated setting mirrors their actions in an actual environment. In this paper, we present a first and innovative approach to evaluating what we term the behavioural gap, a concept that captures the disparity in a participant's conduct when engaging in a VR experiment compared to an equivalent real-world situation. To this end, we developed a digital twin of a pre-existed crosswalk and carried out a field experiment (N=18) to investigate pedestrian-autonomous vehicle interaction in both real and simulated driving conditions. In the experiment, the pedestrian attempts to cross the road in the presence of different driving styles and an external Human-Machine Interface (eHMI). By combining survey-based and behavioural analysis methodologies, we develop a quantitative approach to empirically assess the behavioural gap, as a mechanism to validate data obtained from real subjects interacting in a simulated VR-based environment. Results show that participants are more cautious and curious in VR, affecting their speed and decisions, and that VR interfaces significantly influence their actions.

The automated finite element analysis of complex CAD models using boundary-fitted meshes is rife with difficulties. Immersed finite element methods are intrinsically more robust but usually less accurate. In this work, we introduce an efficient, robust, high-order immersed finite element method for complex CAD models. Our approach relies on three adaptive structured grids: a geometry grid for representing the implicit geometry, a finite element grid for discretising physical fields and a quadrature grid for evaluating the finite element integrals. The geometry grid is a sparse VDB (Volumetric Dynamic B+ tree) grid that is highly refined close to physical domain boundaries. The finite element grid consists of a forest of octree grids distributed over several processors, and the quadrature grid in each finite element cell is an octree grid constructed in a bottom-up fashion. We discretise physical fields on the finite element grid using high-order Lagrange basis functions. The resolution of the quadrature grid ensures that finite element integrals are evaluated with sufficient accuracy and that any sub-grid geometric features, like small holes or corners, are resolved up to a desired resolution. The conceptual simplicity and modularity of our approach make it possible to reuse open-source libraries, i.e. openVDB and p4est for implementing the geometry and finite element grids, respectively, and BDDCML for iteratively solving the discrete systems of equations in parallel using domain decomposition. We demonstrate the efficiency and robustness of the proposed approach by solving the Poisson equation on domains given by complex CAD models and discretised with tens of millions of degrees of freedom.

Measuring a qubit is a fundamental yet error prone operation in quantum computing. These errors can stem from various sources such as crosstalk, spontaneous state-transitions, and excitation caused by the readout pulse. In this work, we utilize an integrated approach to deploy neural networks (NN) on to field programmable gate arrays (FPGA). We demonstrate that it is practical to design and implement a fully connected neural network accelerator for frequency-multiplexed readout balancing computational complexity with low latency requirements without significant loss in accuracy. The neural network is implemented by quantization of weights, activation functions, and inputs. The hardware accelerator performs frequency-multiplexed readout of 5 superconducting qubits in less than 50 ns on RFSoC ZCU111 FPGA which is first of its kind in the literature. These modules can be implemented and integrated in existing Quantum control and readout platforms using a RFSoC ZCU111 ready for experimental deployment.

This work explores multi-modal inference in a high-dimensional simplified model, analytically quantifying the performance gain of multi-modal inference over that of analyzing modalities in isolation. We present the Bayes-optimal performance and weak recovery thresholds in a model where the objective is to recover the latent structures from two noisy data matrices with correlated spikes. The paper derives the approximate message passing (AMP) algorithm for this model and characterizes its performance in the high-dimensional limit via the associated state evolution. The analysis holds for a broad range of priors and noise channels, which can differ across modalities. The linearization of AMP is compared numerically to the widely used partial least squares (PLS) and canonical correlation analysis (CCA) methods, which are both observed to suffer from a sub-optimal recovery threshold.

Many environmental processes such as rainfall, wind or snowfall are inherently spatial and the modelling of extremes has to take into account that feature. In addition, environmental processes are often attached with an angle, e.g., wind speed and direction or extreme snowfall and time of occurrence in year. This article proposes a Bayesian hierarchical model with a conditional independence assumption that aims at modelling simultaneously spatial extremes and an angular component. The proposed model relies on the extreme value theory as well as recent developments for handling directional statistics over a continuous domain. Working within a Bayesian setting, a Gibbs sampler is introduced whose performances are analysed through a simulation study. The paper ends with an application on extreme wind speed in France. Results show that extreme wind events in France are mainly coming from West apart from the Mediterranean part of France and the Alps.

One persistent obstacle in industrial quality inspection is the detection of anomalies. In real-world use cases, two problems must be addressed: anomalous data is sparse and the same types of anomalies need to be detected on previously unseen objects. Current anomaly detection approaches can be trained with sparse nominal data, whereas domain generalization approaches enable detecting objects in previously unseen domains. Utilizing those two observations, we introduce the hybrid task of domain generalization on sparse classes. To introduce an accompanying dataset for this task, we present a modification of the well-established MVTec AD dataset by generating three new datasets. In addition to applying existing methods for benchmark, we design two embedding-based approaches, Spatial Embedding MLP (SEMLP) and Labeled PatchCore. Overall, SEMLP achieves the best performance with an average image-level AUROC of 87.2 % vs. 80.4 % by MIRO. The new and openly available datasets allow for further research to improve industrial anomaly detection.

Threshold selection is a fundamental problem in any threshold-based extreme value analysis. While models are asymptotically motivated, selecting an appropriate threshold for finite samples is difficult and highly subjective through standard methods. Inference for high quantiles can also be highly sensitive to the choice of threshold. Too low a threshold choice leads to bias in the fit of the extreme value model, while too high a choice leads to unnecessary additional uncertainty in the estimation of model parameters. We develop a novel methodology for automated threshold selection that directly tackles this bias-variance trade-off. We also develop a method to account for the uncertainty in the threshold estimation and propagate this uncertainty through to high quantile inference. Through a simulation study, we demonstrate the effectiveness of our method for threshold selection and subsequent extreme quantile estimation, relative to the leading existing methods, and show how the method's effectiveness is not sensitive to the tuning parameters. We apply our method to the well-known, troublesome example of the River Nidd dataset.

The use of operator-splitting methods to solve differential equations is widespread, but the methods are generally only defined for a given number of operators, most commonly two. Most operator-splitting methods are not generalizable to problems with $N$ operators for arbitrary $N$. In fact, there are only two known methods that can be applied to general $N$-split problems: the first-order Lie--Trotter (or Godunov) method and the second-order Strang (or Strang--Marchuk) method. In this paper, we derive two second-order operator-splitting methods that also generalize to $N$-split problems. These methods are complex valued but have positive real parts, giving them favorable stability properties, and require few sub-integrations per stage, making them computationally inexpensive. They can also be used as base methods from which to construct higher-order $N$-split operator-splitting methods with positive real parts. We verify the orders of accuracy of these new $N$-split methods and demonstrate their favorable efficiency properties against well-known real-valued operator-splitting methods on both real-valued and complex-valued differential equations.

There is an ongoing need for scalable tools to aid researchers in both retrospective and prospective standardization of discrete entity types -- such as disease names, cell types or chemicals -- that are used in metadata associated with biomedical data. When metadata are not well-structured or precise, the associated data are harder to find and are often burdensome to reuse, analyze or integrate with other datasets due to the upfront curation effort required to make the data usable -- typically through retrospective standardization and cleaning of the (meta)data. With the goal of facilitating the task of standardizing metadata -- either in bulk or in a one-by-one fashion; for example, to support auto-completion of biomedical entities in forms -- we have developed an open-source tool called text2term that maps free-text descriptions of biomedical entities to controlled terms in ontologies. The tool is highly configurable and can be used in multiple ways that cater to different users and expertise levels -- it is available on PyPI and can be used programmatically as any Python package; it can also be used via a command-line interface; or via our hosted, graphical user interface-based Web application (//text2term.hms.harvard.edu); or by deploying a local instance of our interactive application using Docker.

北京阿比特科技有限公司