In machine learning, generalization against distribution shifts -- where deployment conditions diverge from the training scenarios -- is crucial, particularly in fields like climate modeling, biomedicine, and autonomous driving. The emergence of foundation models, distinguished by their extensive pretraining and task versatility, has led to an increased interest in their adaptability to distribution shifts. GPT-4V(ision) acts as the most advanced publicly accessible multimodal foundation model, with extensive applications across various domains, including anomaly detection, video understanding, image generation, and medical diagnosis. However, its robustness against data distributions remains largely underexplored. Addressing this gap, this study rigorously evaluates GPT-4V's adaptability and generalization capabilities in dynamic environments, benchmarking against prominent models like CLIP and LLaVA. We delve into GPT-4V's zero-shot generalization across 13 diverse datasets spanning natural, medical, and molecular domains. We further investigate its adaptability to controlled data perturbations and examine the efficacy of in-context learning as a tool to enhance its adaptation. Our findings delineate GPT-4V's capability boundaries in distribution shifts, shedding light on its strengths and limitations across various scenarios. Importantly, this investigation contributes to our understanding of how AI foundation models generalize to distribution shifts, offering pivotal insights into their adaptability and robustness. Code is publicly available at //github.com/jameszhou-gl/gpt-4v-distribution-shift.
The advances of deep learning (DL) have paved the way for automatic software vulnerability repair approaches, which effectively learn the mapping from the vulnerable code to the fixed code. Nevertheless, existing DL-based vulnerability repair methods face notable limitations: 1) they struggle to handle lengthy vulnerable code, 2) they treat code as natural language texts, neglecting its inherent structure, and 3) they do not tap into the valuable expert knowledge present in the expert system. To address this, we propose VulMaster, a Transformer-based neural network model that excels at generating vulnerability repairs by comprehensively understanding the entire vulnerable code, irrespective of its length. This model also integrates diverse information, encompassing vulnerable code structures and expert knowledge from the CWE system. We evaluated VulMaster on a real-world C/C++ vulnerability repair dataset comprising 1,754 projects with 5,800 vulnerable functions. The experimental results demonstrated that VulMaster exhibits substantial improvements compared to the learning-based state-of-the-art vulnerability repair approach. Specifically, VulMaster improves the EM, BLEU, and CodeBLEU scores from 10.2\% to 20.0\%, 21.3\% to 29.3\%, and 32.5\% to 40.9\%, respectively.
The empirical success of distributional reinforcement learning~(RL) highly depends on the distribution representation and the choice of distribution divergence. In this paper, we propose \textit{Sinkhorn distributional RL~(SinkhornDRL)} that learns unrestricted statistics from return distributions and leverages Sinkhorn divergence to minimize the difference between current and target Bellman return distributions. Theoretically, we prove the contraction properties of SinkhornDRL, consistent with the interpolation nature of Sinkhorn divergence between Wasserstein distance and Maximum Mean Discrepancy~(MMD). We also establish the equivalence between Sinkhorn divergence and a regularized MMD with a regularized Moment Matching behavior, contributing to explaining the superiority of SinkhornDRL. Empirically, we show that SinkhornDRL is consistently better or comparable to existing algorithms on the Atari games suite.
Self-supervised learning (SSL) learns representations by leveraging an auxiliary unsupervised task, such as classifying semantically related samples, e.g. different data augmentations or modalities. Of the many approaches to SSL, contrastive methods, e.g. SimCLR, CLIP and VicREG, have gained attention for learning representations that achieve downstream performance close to that of supervised learning. However, a theoretical understanding of the mechanism behind these methods eludes. We propose a generative latent variable model for the data and show that several families of discriminative self-supervised algorithms, including contrastive methods, approximately induce its latent structure over representations, providing a unifying theoretical framework. We also justify links to mutual information and the use of a projection head. Fitting our model generatively, as SimVE, improves performance over previous VAE methods on common benchmarks (e.g. FashionMNIST, CIFAR10, CelebA), narrows the gap to discriminative methods on _content_ classification and, as our analysis predicts, outperforms them where _style_ information is required, taking a step toward task-agnostic representations.
Supervised fairness-aware machine learning under distribution shifts is an emerging field that addresses the challenge of maintaining equitable and unbiased predictions when faced with changes in data distributions from source to target domains. In real-world applications, machine learning models are often trained on a specific dataset but deployed in environments where the data distribution may shift over time due to various factors. This shift can lead to unfair predictions, disproportionately affecting certain groups characterized by sensitive attributes, such as race and gender. In this survey, we provide a summary of various types of distribution shifts and comprehensively investigate existing methods based on these shifts, highlighting six commonly used approaches in the literature. Additionally, this survey lists publicly available datasets and evaluation metrics for empirical studies. We further explore the interconnection with related research fields, discuss the significant challenges, and identify potential directions for future studies.
Low-code programming (LCP) refers to programming using models at higher levels of abstraction, resulting in less manual and more efficient programming, and reduced learning effort for amateur developers. Many LCP tools have rapidly evolved and have benefited from the concepts of visual programming languages (VPLs) and programming by demonstration (PBD). With huge increase in interest in using large language models (LLMs) in software engineering, LLM-based LCP has began to become increasingly important. However, the technical principles and application scenarios of traditional approaches to LCP and LLM-based LCP are significantly different. Understanding these key differences and characteristics in the application of the two approaches to LCP by users is crucial for LCP providers in improving existing and developing new LCP tools, and in better assisting users in choosing the appropriate LCP technology. We conducted an empirical study of both traditional LCP and LLM-based LCP. We analyzed developers' discussions on Stack Overflow (SO) over the past three years and then explored the similarities and differences between traditional LCP and LLM-based LCP features and developer feedback. Our findings reveal that while traditional LCP and LLM-based LCP share common primary usage scenarios, they significantly differ in scope, limitations and usage throughout the software development lifecycle, particularly during the implementation phase. We also examine how LLMs impact and integrate with LCP, discussing the latest technological developments in LLM-based LCP, such as its integration with VPLs and the application of LLM Agents in software engineering.
We study the problem of multi-agent reinforcement learning (MARL) with adaptivity constraints -- a new problem motivated by real-world applications where deployments of new policies are costly and the number of policy updates must be minimized. For two-player zero-sum Markov Games, we design a (policy) elimination based algorithm that achieves a regret of $\widetilde{O}(\sqrt{H^3 S^2 ABK})$, while the batch complexity is only $O(H+\log\log K)$. In the above, $S$ denotes the number of states, $A,B$ are the number of actions for the two players respectively, $H$ is the horizon and $K$ is the number of episodes. Furthermore, we prove a batch complexity lower bound $\Omega(\frac{H}{\log_{A}K}+\log\log K)$ for all algorithms with $\widetilde{O}(\sqrt{K})$ regret bound, which matches our upper bound up to logarithmic factors. As a byproduct, our techniques naturally extend to learning bandit games and reward-free MARL within near optimal batch complexity. To the best of our knowledge, these are the first line of results towards understanding MARL with low adaptivity.
In modern recommendation systems, the standard pipeline involves training machine learning models on historical data to predict user behaviors and improve recommendations continuously. However, these data training loops can introduce interference in A/B tests, where data generated by control and treatment algorithms, potentially with different distributions, are combined. To address these challenges, we introduce a novel approach called weighted training. This approach entails training a model to predict the probability of each data point appearing in either the treatment or control data and subsequently applying weighted losses during model training. We demonstrate that this approach achieves the least variance among all estimators without causing shifts in the training distributions. Through simulation studies, we demonstrate the lower bias and variance of our approach compared to other methods.
Motion prediction and planning are vital tasks in autonomous driving, and recent efforts have shifted to machine learning-based approaches. The challenges include understanding diverse road topologies, reasoning traffic dynamics over a long time horizon, interpreting heterogeneous behaviors, and generating policies in a large continuous state space. Inspired by the success of large language models in addressing similar complexities through model scaling, we introduce a scalable trajectory model called State Transformer (STR). STR reformulates the motion prediction and motion planning problems by arranging observations, states, and actions into one unified sequence modeling task. Our approach unites trajectory generation problems with other sequence modeling problems, powering rapid iterations with breakthroughs in neighbor domains such as language modeling. Remarkably, experimental results reveal that large trajectory models (LTMs), such as STR, adhere to the scaling laws by presenting outstanding adaptability and learning efficiency. Qualitative results further demonstrate that LTMs are capable of making plausible predictions in scenarios that diverge significantly from the training data distribution. LTMs also learn to make complex reasonings for long-term planning, without explicit loss designs or costly high-level annotations.
We present a new computing model for intrinsic rewards in reinforcement learning that addresses the limitations of existing surprise-driven explorations. The reward is the novelty of the surprise rather than the surprise norm. We estimate the surprise novelty as retrieval errors of a memory network wherein the memory stores and reconstructs surprises. Our surprise memory (SM) augments the capability of surprise-based intrinsic motivators, maintaining the agent's interest in exciting exploration while reducing unwanted attraction to unpredictable or noisy observations. Our experiments demonstrate that the SM combined with various surprise predictors exhibits efficient exploring behaviors and significantly boosts the final performance in sparse reward environments, including Noisy-TV, navigation and challenging Atari games.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).