Instruction-tuned large language models have demonstrated remarkable capabilities in following human instructions across various domains. However, their proficiency remains notably deficient in many low-resource languages. To address this challenge, we begin by introducing FarsInstruct a comprehensive instruction dataset designed to enhance the instruction following ability of large language models specifically for the Persian language a significant yet underrepresented language globally. FarsInstruct encompasses a wide range of task types and datasets, each containing a mix of straightforward to complex manual written instructions, as well as translations from the Public Pool of Prompts, ensuring a rich linguistic and cultural representation. Furthermore, we introduce Co-CoLA, a framework designed to enhance the multi-task adaptability of LoRA-tuned models. Through extensive experimental analyses, our study showcases the effectiveness of the FarsInstruct dataset coupled with training by the Co-CoLA framework, in improving the performance of large language models within the Persian context. As of the current writing, FarsInstruct comprises 197 templates across 21 distinct datasets, and we intend to update it consistently, thus augmenting its applicability.
This paper addresses the challenges in developing language models for less-represented languages, with a focus on Luxembourgish. Despite its active development, Luxembourgish faces a digital data scarcity, exacerbated by Luxembourg's multilingual context. We propose a novel text generation model based on the T5 architecture, combining limited Luxembourgish data with equal amounts, in terms of size and type, of German and French data. We hypothesise that a model trained on Luxembourgish, German, and French will improve the model's cross-lingual transfer learning capabilities and outperform monolingual and large multilingual models. To verify this, the study at hand explores whether multilingual or monolingual training is more beneficial for Luxembourgish language generation. For the evaluation, we introduce LuxGen, a text generation benchmark that is the first of its kind for Luxembourgish.
Language models have emerged as a critical area of focus in artificial intelligence, particularly with the introduction of groundbreaking innovations like ChatGPT. Large-scale Transformer networks have quickly become the leading approach for advancing natural language processing algorithms. Built on the Transformer architecture, these models enable interactions that closely mimic human communication and, equipped with extensive knowledge, can even assist in guiding human tasks. Despite their impressive capabilities and growing complexity, a key question remains-the theoretical foundations of large language models (LLMs). What makes Transformer so effective for powering intelligent language applications, such as translation and coding? What underlies LLMs' ability for In-Context Learning (ICL)? How does the LoRA scheme enhance the fine-tuning of LLMs? And what supports the practicality of pruning LLMs? To address these critical questions and explore the technological strategies within LLMs, we leverage the Universal Approximation Theory (UAT) to offer a theoretical backdrop, shedding light on the mechanisms that underpin these advancements.
The use of large language models (LLMs) for qualitative analysis is gaining attention in various fields, including software engineering, where qualitative methods are essential for understanding human and social factors. This study aimed to investigate how LLMs are currently used in qualitative analysis and their potential applications in software engineering research, focusing on the benefits, limitations, and practices associated with their use. A systematic mapping study was conducted, analyzing 21 relevant studies to explore reported uses of LLMs for qualitative analysis. The findings indicate that LLMs are primarily used for tasks such as coding, thematic analysis, and data categorization, offering benefits like increased efficiency and support for new researchers. However, limitations such as output variability, challenges in capturing nuanced perspectives, and ethical concerns related to privacy and transparency were also identified. The study emphasizes the need for structured strategies and guidelines to optimize LLM use in qualitative research within software engineering, enhancing their effectiveness while addressing ethical considerations. While LLMs show promise in supporting qualitative analysis, human expertise remains crucial for interpreting data, and ongoing exploration of best practices will be vital for their successful integration into empirical software engineering research.
Bias studies on multilingual models confirm the presence of gender-related stereotypes in masked models processing languages with high NLP resources. We expand on this line of research by introducing Filipino CrowS-Pairs and Filipino WinoQueer: benchmarks that assess both sexist and anti-queer biases in pretrained language models (PLMs) handling texts in Filipino, a low-resource language from the Philippines. The benchmarks consist of 7,074 new challenge pairs resulting from our cultural adaptation of English bias evaluation datasets, a process that we document in detail to guide similar forthcoming efforts. We apply the Filipino benchmarks on masked and causal multilingual models, including those pretrained on Southeast Asian data, and find that they contain considerable amounts of bias. We also find that for multilingual models, the extent of bias learned for a particular language is influenced by how much pretraining data in that language a model was exposed to. Our benchmarks and insights can serve as a foundation for future work analyzing and mitigating bias in multilingual models.
While scaling laws optimize training configurations for large language models (LLMs) through experiments on smaller or early-stage models, they fail to predict emergent abilities due to the absence of such capabilities in these models. To address this, we propose a method that predicts emergent abilities by leveraging proxy tasks. We begin by establishing relevance metrics between the target task and candidate tasks based on performance differences across multiple models. These candidate tasks are then validated for robustness with small model ensembles, leading to the selection of the most appropriate proxy tasks. The predicted performance on the target task is then derived by integrating the evaluation results of these proxies. In a case study on tool utilization capabilities, our method demonstrated a strong correlation between predicted and actual performance, confirming its effectiveness.
The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at //github.com/Wang-ML-Lab/llm-continual-learning-survey.
Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.