亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The solution to a stochastic optimal control problem can be determined by computing the value function from a discretization of the associated Hamilton-Jacobi-Bellman equation. Alternatively, the problem can be reformulated in terms of a pair of forward-backward SDEs, which makes Monte-Carlo techniques applicable. More recently, the problem has also been viewed from the perspective of forward and reverse time SDEs and their associated Fokker-Planck equations. This approach is closely related to techniques used in diffusion-based generative models. Forward and reverse time formulations express the value function as the ratio of two probability density functions; one stemming from a forward McKean-Vlasov SDE and another one from a reverse McKean-Vlasov SDE. In this paper, we extend this approach to a more general class of stochastic optimal control problems and combine it with ensemble Kalman filter type and diffusion map approximation techniques in order to obtain efficient and robust particle-based algorithms.

相關內容

We propose a new randomized method for solving systems of nonlinear equations, which can find sparse solutions or solutions under certain simple constraints. The scheme only takes gradients of component functions and uses Bregman projections onto the solution space of a Newton equation. In the special case of euclidean projections, the method is known as nonlinear Kaczmarz method. Furthermore, if the component functions are nonnegative, we are in the setting of optimization under the interpolation assumption and the method reduces to SGD with the recently proposed stochastic Polyak step size. For general Bregman projections, our method is a stochastic mirror descent with a novel adaptive step size. We prove that in the convex setting each iteration of our method results in a smaller Bregman distance to exact solutions as compared to the standard Polyak step. Our generalization to Bregman projections comes with the price that a convex one-dimensional optimization problem needs to be solved in each iteration. This can typically be done with globalized Newton iterations. Convergence is proved in two classical settings of nonlinearity: for convex nonnegative functions and locally for functions which fulfill the tangential cone condition. Finally, we show examples in which the proposed method outperforms similar methods with the same memory requirements.

Mass lumping techniques are commonly employed in explicit time integration schemes for problems in structural dynamics and both avoid solving costly linear systems with the consistent mass matrix and increase the critical time step. In isogeometric analysis, the critical time step is constrained by so-called "outlier" frequencies, representing the inaccurate high frequency part of the spectrum. Removing or dampening these high frequencies is paramount for fast explicit solution techniques. In this work, we propose robust mass lumping and outlier removal techniques for nontrivial geometries, including multipatch and trimmed geometries. Our lumping strategies provably do not deteriorate (and often improve) the CFL condition of the original problem and are combined with deflation techniques to remove persistent outlier frequencies. Numerical experiments reveal the advantages of the method, especially for simulations covering large time spans where they may halve the number of iterations with little or no effect on the numerical solution.

Several mixed-effects models for longitudinal data have been proposed to accommodate the non-linearity of late-life cognitive trajectories and assess the putative influence of covariates on it. No prior research provides a side-by-side examination of these models to offer guidance on their proper application and interpretation. In this work, we examined five statistical approaches previously used to answer research questions related to non-linear changes in cognitive aging: the linear mixed model (LMM) with a quadratic term, LMM with splines, the functional mixed model, the piecewise linear mixed model, and the sigmoidal mixed model. We first theoretically describe the models. Next, using data from two prospective cohorts with annual cognitive testing, we compared the interpretation of the models by investigating associations of education on cognitive change before death. Lastly, we performed a simulation study to empirically evaluate the models and provide practical recommendations. Except for the LMM-quadratic, the fit of all models was generally adequate to capture non-linearity of cognitive change and models were relatively robust. Although spline-based models have no interpretable nonlinearity parameters, their convergence was easier to achieve, and they allow graphical interpretation. In contrast, piecewise and sigmoidal models, with interpretable non-linear parameters, may require more data to achieve convergence.

Genome assembly is a prominent problem studied in bioinformatics, which computes the source string using a set of its overlapping substrings. Classically, genome assembly uses assembly graphs built using this set of substrings to compute the source string efficiently, having a tradeoff between scalability and avoiding information loss. The scalable de Bruijn graphs come at the price of losing crucial overlap information. The complete overlap information is stored in overlap graphs using quadratic space. Hierarchical overlap graphs [IPL20] (HOG) overcome these limitations, avoiding information loss despite using linear space. After a series of suboptimal improvements, Khan and Park et al. simultaneously presented two optimal algorithms [CPM2021], where only the former was seemingly practical. We empirically analyze all the practical algorithms for computing HOG, where the optimal algorithm [CPM2021] outperforms the previous algorithms as expected, though at the expense of extra memory. However, it uses non-intuitive approach and non-trivial data structures. We present arguably the most intuitive algorithm, using only elementary arrays, which is also optimal. Our algorithm empirically proves even better for both time and memory over all the algorithms, highlighting its significance in both theory and practice. We further explore the applications of hierarchical overlap graphs to solve various forms of suffix-prefix queries on a set of strings. Loukides et al. [CPM2023] recently presented state-of-the-art algorithms for these queries. However, these algorithms require complex black-box data structures and are seemingly impractical. Our algorithms, despite failing to match the state-of-the-art algorithms theoretically, answer different queries ranging from 0.01-100 milliseconds for a data set having around a billion characters.

For the stochastic heat equation with multiplicative noise we consider the problem of estimating the diffusivity parameter in front of the Laplace operator. Based on local observations in space, we first study an estimator that was derived for additive noise. A stable central limit theorem shows that this estimator is consistent and asymptotically mixed normal. By taking into account the quadratic variation, we propose two new estimators. Their limiting distributions exhibit a smaller (conditional) variance and the last estimator also works for vanishing noise levels. The proofs are based on local approximation results to overcome the intricate nonlinearities and on a stable central limit theorem for stochastic integrals with respect to cylindrical Brownian motion. Simulation results illustrate the theoretical findings.

We study the performance of stochastic first-order methods for finding saddle points of convex-concave functions. A notorious challenge faced by such methods is that the gradients can grow arbitrarily large during optimization, which may result in instability and divergence. In this paper, we propose a simple and effective regularization technique that stabilizes the iterates and yields meaningful performance guarantees even if the domain and the gradient noise scales linearly with the size of the iterates (and is thus potentially unbounded). Besides providing a set of general results, we also apply our algorithm to a specific problem in reinforcement learning, where it leads to performance guarantees for finding near-optimal policies in an average-reward MDP without prior knowledge of the bias span.

By computing a feedback control via the linear quadratic regulator (LQR) approach and simulating a non-linear non-autonomous closed-loop system using this feedback, we combine two numerically challenging tasks. For the first task, the computation of the feedback control, we use the non-autonomous generalized differential Riccati equation (DRE), whose solution determines the time-varying feedback gain matrix. Regarding the second task, we want to be able to simulate non-linear closed-loop systems for which it is known that the regulator is only valid for sufficiently small perturbations. Thus, one easily runs into numerical issues in the integrators when the closed-loop control varies greatly. For these systems, e.g., the A-stable implicit Euler methods fails.\newline On the one hand, we implement non-autonomous versions of splitting schemes and BDF methods for the solution of our non-autonomous DREs. These are well-established DRE solvers in the autonomous case. On the other hand, to tackle the numerical issues in the simulation of the non-linear closed-loop system, we apply a fractional-step-theta scheme with time-adaptivity tuned specifically to this kind of challenge. That is, we additionally base the time-adaptivity on the activity of the control. We compare this approach to the more classical error-based time-adaptivity.\newline We describe techniques to make these two tasks computable in a reasonable amount of time and are able to simulate closed-loop systems with strongly varying controls, while avoiding numerical issues. Our time-adaptivity approach requires fewer time steps than the error-based alternative and is more reliable.

The scale function holds significant importance within the fluctuation theory of Levy processes, particularly in addressing exit problems. However, its definition is established through the Laplace transform, thereby lacking explicit representations in general. This paper introduces a novel series representation for this scale function, employing Laguerre polynomials to construct a uniformly convergent approximate sequence. Additionally, we derive statistical inference based on specific discrete observations, presenting estimators of scale functions that are asymptotically normal.

We extend generalized functional linear models under independence to a situation in which a functional covariate is related to a scalar response variable that exhibits spatial dependence. For estimation, we apply basis expansion and truncation for dimension reduction of the covariate process followed by a composite likelihood estimating equation to handle the spatial dependency. We develop asymptotic results for the proposed model under a repeating lattice asymptotic context, allowing us to construct a confidence interval for the spatial dependence parameter and a confidence band for the parameter function. A binary conditionals model is presented as a concrete illustration and is used in simulation studies to verify the applicability of the asymptotic inferential results.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

北京阿比特科技有限公司