Few-shot object detection (FSOD) identifies objects from extremely few annotated samples. Most existing FSOD methods, recently, apply the two-stage learning paradigm, which transfers the knowledge learned from abundant base classes to assist the few-shot detectors by learning the global features. However, such existing FSOD approaches seldom consider the localization of objects from local to global. Limited by the scarce training data in FSOD, the training samples of novel classes typically capture part of objects, resulting in such FSOD methods cannot detect the completely unseen object during testing. To tackle this problem, we propose an Extensible Co-Existing Attention (ECEA) module to enable the model to infer the global object according to the local parts. Essentially, the proposed module continuously learns the extensible ability on the base stage with abundant samples and transfers it to the novel stage, which can assist the few-shot model to quickly adapt in extending local regions to co-existing regions. Specifically, we first devise an extensible attention mechanism that starts with a local region and extends attention to co-existing regions that are similar and adjacent to the given local region. We then implement the extensible attention mechanism in different feature scales to progressively discover the full object in various receptive fields. Extensive experiments on the PASCAL VOC and COCO datasets show that our ECEA module can assist the few-shot detector to completely predict the object despite some regions failing to appear in the training samples and achieve the new state of the art compared with existing FSOD methods.
Feature extraction and matching are the basic parts of many robotic vision tasks, such as 2D or 3D object detection, recognition, and registration. As known, 2D feature extraction and matching have already been achieved great success. Unfortunately, in the field of 3D, the current methods fail to support the extensive application of 3D LiDAR sensors in robotic vision tasks, due to the poor descriptiveness and inefficiency. To address this limitation, we propose a novel 3D feature representation method: Linear Keypoints representation for 3D LiDAR point cloud, called LinK3D. The novelty of LinK3D lies in that it fully considers the characteristics (such as the sparsity, and complexity of scenes) of LiDAR point clouds, and represents the keypoint with its robust neighbor keypoints, which provide strong distinction in the description of the keypoint. The proposed LinK3D has been evaluated on two public datasets (i.e., KITTI, Steven VLP16), and the experimental results show that our method greatly outperforms the state-of-the-art in matching performance. More importantly, LinK3D shows excellent real-time performance, faster than the sensor frame rate at 10 Hz of a typical rotating LiDAR sensor. LinK3D only takes an average of 32 milliseconds to extract features from the point cloud collected by a 64-beam LiDAR, and takes merely about 8 milliseconds to match two LiDAR scans when executed in a notebook with an Intel Core i7 @2.2 GHz processor. Moreover, our method can be widely extended to various 3D vision applications. In this paper, we apply the proposed LinK3D to the LiDAR odometry and place recognition task of LiDAR SLAM. The experimental results show that our method can improve the efficiency and accuracy of LiDAR SLAM system.
Widely-used LiDAR-based 3D object detectors often neglect fundamental geometric information readily available from the object proposals in their confidence estimation. This is mostly due to architectural design choices, which were often adopted from the 2D image domain, where geometric context is rarely available. In 3D, however, considering the object properties and its surroundings in a holistic way is important to distinguish between true and false positive detections, e.g. occluded pedestrians in a group. To address this, we present GACE, an intuitive and highly efficient method to improve the confidence estimation of a given black-box 3D object detector. We aggregate geometric cues of detections and their spatial relationships, which enables us to properly assess their plausibility and consequently, improve the confidence estimation. This leads to consistent performance gains over a variety of state-of-the-art detectors. Across all evaluated detectors, GACE proves to be especially beneficial for the vulnerable road user classes, i.e. pedestrians and cyclists.
Recent camouflaged object detection (COD) attempts to segment objects visually blended into their surroundings, which is extremely complex and difficult in real-world scenarios. Apart from the high intrinsic similarity between camouflaged objects and their background, objects are usually diverse in scale, fuzzy in appearance, and even severely occluded. To this end, we propose an effective unified collaborative pyramid network which mimics human behavior when observing vague images and videos, \textit{i.e.}, zooming in and out. Specifically, our approach employs the zooming strategy to learn discriminative mixed-scale semantics by the multi-head scale integration and rich granularity perception units, which are designed to fully explore imperceptible clues between candidate objects and background surroundings. The former's intrinsic multi-head aggregation provides more diverse visual patterns. The latter's routing mechanism can effectively propagate inter-frame difference in spatiotemporal scenarios and adaptively ignore static representations. They provides a solid foundation for realizing a unified architecture for static and dynamic COD. Moreover, considering the uncertainty and ambiguity derived from indistinguishable textures, we construct a simple yet effective regularization, uncertainty awareness loss, to encourage predictions with higher confidence in candidate regions. Our highly task-friendly framework consistently outperforms existing state-of-the-art methods in image and video COD benchmarks. The code will be available at \url{//github.com/lartpang/ZoomNeXt}.
Large-scale text-to-image diffusion models have been a ground-breaking development in generating convincing images following an input text prompt. The goal of image editing research is to give users control over the generated images by modifying the text prompt. Current image editing techniques are relying on DDIM inversion as a common practice based on the Latent Diffusion Models (LDM). However, the large pretrained T2I models working on the latent space as LDM suffer from losing details due to the first compression stage with an autoencoder mechanism. Instead, another mainstream T2I pipeline working on the pixel level, such as Imagen and DeepFloyd-IF, avoids this problem. They are commonly composed of several stages, normally with a text-to-image stage followed by several super-resolution stages. In this case, the DDIM inversion is unable to find the initial noise to generate the original image given that the super-resolution diffusion models are not compatible with the DDIM technique. According to our experimental findings, iteratively concatenating the noisy image as the condition is the root of this problem. Based on this observation, we develop an iterative inversion (IterInv) technique for this stream of T2I models and verify IterInv with the open-source DeepFloyd-IF model. By combining our method IterInv with a popular image editing method, we prove the application prospects of IterInv. The code will be released at \url{//github.com/Tchuanm/IterInv.git}.
This paper considers a stochastic Multi-Armed Bandit (MAB) problem with dual objectives: (i) quick identification and commitment to the optimal arm, and (ii) reward maximization throughout a sequence of $T$ consecutive rounds. Though each objective has been individually well-studied, i.e., best arm identification for (i) and regret minimization for (ii), the simultaneous realization of both objectives remains an open problem, despite its practical importance. This paper introduces \emph{Regret Optimal Best Arm Identification} (ROBAI) which aims to achieve these dual objectives. To solve ROBAI with both pre-determined stopping time and adaptive stopping time requirements, we present an algorithm called EOCP and its variants respectively, which not only achieve asymptotic optimal regret in both Gaussian and general bandits, but also commit to the optimal arm in $\mathcal{O}(\log T)$ rounds with pre-determined stopping time and $\mathcal{O}(\log^2 T)$ rounds with adaptive stopping time. We further characterize lower bounds on the commitment time (equivalent to the sample complexity) of ROBAI, showing that EOCP and its variants are sample optimal with pre-determined stopping time, and almost sample optimal with adaptive stopping time. Numerical results confirm our theoretical analysis and reveal an interesting "over-exploration" phenomenon carried by classic UCB algorithms, such that EOCP has smaller regret even though it stops exploration much earlier than UCB, i.e., $\mathcal{O}(\log T)$ versus $\mathcal{O}(T)$, which suggests over-exploration is unnecessary and potentially harmful to system performance.
We present TOCH, a method for refining incorrect 3D hand-object interaction sequences using a data prior. Existing hand trackers, especially those that rely on very few cameras, often produce visually unrealistic results with hand-object intersection or missing contacts. Although correcting such errors requires reasoning about temporal aspects of interaction, most previous works focus on static grasps and contacts. The core of our method are TOCH fields, a novel spatio-temporal representation for modeling correspondences between hands and objects during interaction. TOCH fields are a point-wise, object-centric representation, which encode the hand position relative to the object. Leveraging this novel representation, we learn a latent manifold of plausible TOCH fields with a temporal denoising auto-encoder. Experiments demonstrate that TOCH outperforms state-of-the-art 3D hand-object interaction models, which are limited to static grasps and contacts. More importantly, our method produces smooth interactions even before and after contact. Using a single trained TOCH model, we quantitatively and qualitatively demonstrate its usefulness for correcting erroneous sequences from off-the-shelf RGB/RGB-D hand-object reconstruction methods and transferring grasps across objects.
This paper presents Pix2Seq, a simple and generic framework for object detection. Unlike existing approaches that explicitly integrate prior knowledge about the task, we simply cast object detection as a language modeling task conditioned on the observed pixel inputs. Object descriptions (e.g., bounding boxes and class labels) are expressed as sequences of discrete tokens, and we train a neural net to perceive the image and generate the desired sequence. Our approach is based mainly on the intuition that if a neural net knows about where and what the objects are, we just need to teach it how to read them out. Beyond the use of task-specific data augmentations, our approach makes minimal assumptions about the task, yet it achieves competitive results on the challenging COCO dataset, compared to highly specialized and well optimized detection algorithms.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
Most existing event extraction (EE) methods merely extract event arguments within the sentence scope. However, such sentence-level EE methods struggle to handle soaring amounts of documents from emerging applications, such as finance, legislation, health, etc., where event arguments always scatter across different sentences, and even multiple such event mentions frequently co-exist in the same document. To address these challenges, we propose a novel end-to-end model, Doc2EDAG, which can generate an entity-based directed acyclic graph to fulfill the document-level EE (DEE) effectively. Moreover, we reformalize a DEE task with the no-trigger-words design to ease the document-level event labeling. To demonstrate the effectiveness of Doc2EDAG, we build a large-scale real-world dataset consisting of Chinese financial announcements with the challenges mentioned above. Extensive experiments with comprehensive analyses illustrate the superiority of Doc2EDAG over state-of-the-art methods. Data and codes can be found at //github.com/dolphin-zs/Doc2EDAG.
Generic object detection, aiming at locating object instances from a large number of predefined categories in natural images, is one of the most fundamental and challenging problems in computer vision. Deep learning techniques have emerged in recent years as powerful methods for learning feature representations directly from data, and have led to remarkable breakthroughs in the field of generic object detection. Given this time of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought by deep learning techniques. More than 250 key contributions are included in this survey, covering many aspects of generic object detection research: leading detection frameworks and fundamental subproblems including object feature representation, object proposal generation, context information modeling and training strategies; evaluation issues, specifically benchmark datasets, evaluation metrics, and state of the art performance. We finish by identifying promising directions for future research.