亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Interstitial diffusion is a pivotal process that governs the phase stability and irradiation response of materials in non-equilibrium conditions. In this work, we study sluggish and chemically-biased interstitial diffusion in Fe-Ni concentrated solid solution alloys (CSAs) by combining machine learning (ML) and kinetic Monte Carlo (kMC), where ML is used to accurately and efficiently predict the migration energy barriers on-the-fly. The ML-kMC reproduces the diffusivity that was reported by molecular dynamics results at high temperatures. With this powerful tool, we find that the observed sluggish diffusion and the "Ni-Ni-Ni"-biased diffusion in Fe-Ni alloys are ascribed to a unique "Barrier Lock" mechanism, whereas the "Fe-Fe-Fe"-biased diffusion is influenced by a "Component Dominance" mechanism. Inspired by the mentioned mechanisms, a practical AvgS-kMC method is proposed for conveniently and swiftly determining interstitial-mediated diffusivity by only relying on the mean energy barriers of migration patterns. Combining the AvgS-kMC with the differential evolutionary algorithm, an inverse design strategy for optimizing sluggish diffusion properties is applied to emphasize the crucial role of favorable migration patterns.

相關內容

The increasing demand for autonomous machines in construction environments necessitates the development of robust object detection algorithms that can perform effectively across various weather and environmental conditions. This paper introduces a new semantic segmentation dataset specifically tailored for construction sites, taking into account the diverse challenges posed by adverse weather and environmental conditions. The dataset is designed to enhance the training and evaluation of object detection models, fostering their adaptability and reliability in real-world construction applications. Our dataset comprises annotated images captured under a wide range of different weather conditions, including but not limited to sunny days, rainy periods, foggy atmospheres, and low-light situations. Additionally, environmental factors such as the existence of dirt/mud on the camera lens are integrated into the dataset through actual captures and synthetic generation to simulate the complex conditions prevalent in construction sites. We also generate synthetic images of the annotations including precise semantic segmentation masks for various objects commonly found in construction environments, such as wheel loader machines, personnel, cars, and structural elements. To demonstrate the dataset's utility, we evaluate state-of-the-art object detection algorithms on our proposed benchmark. The results highlight the dataset's success in adversarial training models across diverse conditions, showcasing its efficacy compared to existing datasets that lack such environmental variability.

With the steady rise of the use of AI in bio-technical applications and the widespread adoption of genomics sequencing, an increasing amount of AI-based algorithms and tools is entering the research and production stage affecting critical decision-making streams like drug discovery and clinical outcomes. This paper demonstrates the vulnerability of AI models often utilized downstream tasks on recognized public genomics datasets. We undermine model robustness by deploying an attack that focuses on input transformation while mimicking the real data and confusing the model decision-making, ultimately yielding a pronounced deterioration in model performance. Further, we enhance our approach by generating poisoned data using a variational autoencoder-based model. Our empirical findings unequivocally demonstrate a decline in model performance, underscored by diminished accuracy and an upswing in false positives and false negatives. Furthermore, we analyze the resulting adversarial samples via spectral analysis yielding conclusions for countermeasures against such attacks.

In underwater environments, variations in suspended particle concentration and turbidity cause severe image degradation, posing significant challenges to image enhancement (IE) and object detection (OD) tasks. Currently, in-air image enhancement and detection methods have made notable progress, but their application in underwater conditions is limited due to the complexity and variability of these environments. Fine-tuning in-air models saves high overhead and has more optional reference work than building an underwater model from scratch. To address these issues, we design a transfer plugin with multiple priors for converting in-air models to underwater applications, named IA2U. IA2U enables efficient application in underwater scenarios, thereby improving performance in Underwater IE and OD. IA2U integrates three types of underwater priors: the water type prior that characterizes the degree of image degradation, such as color and visibility; the degradation prior, focusing on differences in details and textures; and the sample prior, considering the environmental conditions at the time of capture and the characteristics of the photographed object. Utilizing a Transformer-like structure, IA2U employs these priors as query conditions and a joint task loss function to achieve hierarchical enhancement of task-level underwater image features, therefore considering the requirements of two different tasks, IE and OD. Experimental results show that IA2U combined with an in-air model can achieve superior performance in underwater image enhancement and object detection tasks. The code will be made publicly available.

Knowledge distillation is the process of transferring knowledge from a more powerful large model (teacher) to a simpler counterpart (student). Numerous current approaches involve the student imitating the knowledge of the teacher directly. However, redundancy still exists in the learned representations through these prevalent methods, which tend to learn each spatial location's features indiscriminately. To derive a more compact representation (concept feature) from the teacher, inspired by human cognition, we suggest an innovative method, termed Generative Denoise Distillation (GDD), where stochastic noises are added to the concept feature of the student to embed them into the generated instance feature from a shallow network. Then, the generated instance feature is aligned with the knowledge of the instance from the teacher. We extensively experiment with object detection, instance segmentation, and semantic segmentation to demonstrate the versatility and effectiveness of our method. Notably, GDD achieves new state-of-the-art performance in the tasks mentioned above. We have achieved substantial improvements in semantic segmentation by enhancing PspNet and DeepLabV3, both of which are based on ResNet-18, resulting in mIoU scores of 74.67 and 77.69, respectively, surpassing their previous scores of 69.85 and 73.20 on the Cityscapes dataset of 20 categories. The source code is available at //github.com/ZhgLiu/GDD.

Empirical process theory for i.i.d. observations has emerged as a ubiquitous tool for understanding the generalization properties of various statistical problems. However, in many applications where the data exhibit temporal dependencies (e.g., in finance, medical imaging, weather forecasting etc.), the corresponding empirical processes are much less understood. Motivated by this observation, we present a general bound on the expected supremum of empirical processes under standard $\beta/\rho$-mixing assumptions. Unlike most prior work, our results cover both the long and the short-range regimes of dependence. Our main result shows that a non-trivial trade-off between the complexity of the underlying function class and the dependence among the observations characterizes the learning rate in a large class of nonparametric problems. This trade-off reveals a new phenomenon, namely that even under long-range dependence, it is possible to attain the same rates as in the i.i.d. setting, provided the underlying function class is complex enough. We demonstrate the practical implications of our findings by analyzing various statistical estimators in both fixed and growing dimensions. Our main examples include a comprehensive case study of generalization error bounds in nonparametric regression over smoothness classes in fixed as well as growing dimension using neural nets, shape-restricted multivariate convex regression, estimating the optimal transport (Wasserstein) distance between two probability distributions, and classification under the Mammen-Tsybakov margin condition -- all under appropriate mixing assumptions. In the process, we also develop bounds on $L_r$ ($1\le r\le 2$)-localized empirical processes with dependent observations, which we then leverage to get faster rates for (a) tuning-free adaptation, and (b) set-structured learning problems.

Connected and automated vehicles (CAVs) have emerged as a potential solution to the future challenges of developing safe, efficient, and eco-friendly transportation systems. However, CAV control presents significant challenges, given the complexity of interconnectivity and coordination required among the vehicles. To address this, multi-agent reinforcement learning (MARL), with its notable advancements in addressing complex problems in autonomous driving, robotics, and human-vehicle interaction, has emerged as a promising tool for enhancing the capabilities of CAVs. However, there is a notable absence of current reviews on the state-of-the-art MARL algorithms in the context of CAVs. Therefore, this paper delivers a comprehensive review of the application of MARL techniques within the field of CAV control. The paper begins by introducing MARL, followed by a detailed explanation of its unique advantages in addressing complex mobility and traffic scenarios that involve multiple agents. It then presents a comprehensive survey of MARL applications on the extent of control dimensions for CAVs, covering critical and typical scenarios such as platooning control, lane-changing, and unsignalized intersections. In addition, the paper provides a comprehensive review of the prominent simulation platforms used to create reliable environments for training in MARL. Lastly, the paper examines the current challenges associated with deploying MARL within CAV control and outlines potential solutions that can effectively overcome these issues. Through this review, the study highlights the tremendous potential of MARL to enhance the performance and collaboration of CAV control in terms of safety, travel efficiency, and economy.

In an era characterized by the pervasive integration of artificial intelligence into decision-making processes across diverse industries, the demand for trust has never been more pronounced. This thesis embarks on a comprehensive exploration of bias and fairness, with a particular emphasis on their ramifications within the banking sector, where AI-driven decisions bear substantial societal consequences. In this context, the seamless integration of fairness, explainability, and human oversight is of utmost importance, culminating in the establishment of what is commonly referred to as "Responsible AI". This emphasizes the critical nature of addressing biases within the development of a corporate culture that aligns seamlessly with both AI regulations and universal human rights standards, particularly in the realm of automated decision-making systems. Nowadays, embedding ethical principles into the development, training, and deployment of AI models is crucial for compliance with forthcoming European regulations and for promoting societal good. This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias. These contributions are validated through their practical application in real-world scenarios, in collaboration with Intesa Sanpaolo. This collaborative effort not only contributes to our understanding of fairness but also provides practical tools for the responsible implementation of AI-based decision-making systems. In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages, further promoting progress in the field of AI fairness.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.

北京阿比特科技有限公司