亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models (LLM) have been successful in several natural language understanding tasks and could be relevant for natural language processing (NLP)-based mental health application research. In this work, we report the performance of LLM-based ChatGPT (with gpt-3.5-turbo backend) in three text-based mental health classification tasks: stress detection (2-class classification), depression detection (2-class classification), and suicidality detection (5-class classification). We obtained annotated social media posts for the three classification tasks from public datasets. Then ChatGPT API classified the social media posts with an input prompt for classification. We obtained F1 scores of 0.73, 0.86, and 0.37 for stress detection, depression detection, and suicidality detection, respectively. A baseline model that always predicted the dominant class resulted in F1 scores of 0.35, 0.60, and 0.19. The zero-shot classification accuracy obtained with ChatGPT indicates a potential use of language models for mental health classification tasks.

相關內容

ChatGPT(全名(ming):Chat Generative Pre-trained Transformer),美國OpenAI 研發(fa)的(de)聊(liao)天(tian)(tian)機(ji)器人(ren)程序(xu) [1] ,于2022年11月30日發(fa)布 。ChatGPT是人(ren)工智能技術驅動(dong)(dong)的(de)自然語言處(chu)理工具,它能夠通過學習和(he)理解人(ren)類的(de)語言來(lai)進行(xing)(xing)對話,還(huan)能根據聊(liao)天(tian)(tian)的(de)上下文(wen)進行(xing)(xing)互動(dong)(dong),真正像人(ren)類一樣(yang)來(lai)聊(liao)天(tian)(tian)交(jiao)流,甚至能完成(cheng)撰(zhuan)寫郵件、視(shi)頻腳本(ben)、文(wen)案、翻(fan)譯、代碼(ma),寫論文(wen)任務。 [1] //openai.com/blog/chatgpt/

The Segment Anything Model (SAM) is the first foundation model for general image segmentation. It designed a novel promotable segmentation task, ensuring zero-shot image segmentation using the pre-trained model via two main modes including automatic everything and manual prompt. SAM has achieved impressive results on various natural image segmentation tasks. However, medical image segmentation (MIS) is more challenging due to the complex modalities, fine anatomical structures, uncertain and complex object boundaries, and wide-range object scales. Meanwhile, zero-shot and efficient MIS can well reduce the annotation time and boost the development of medical image analysis. Hence, SAM seems to be a potential tool and its performance on large medical datasets should be further validated. We collected and sorted 52 open-source datasets, and built a large medical segmentation dataset with 16 modalities, 68 objects, and 553K slices. We conducted a comprehensive analysis of different SAM testing strategies on the so-called COSMOS 553K dataset. Extensive experiments validate that SAM performs better with manual hints like points and boxes for object perception in medical images, leading to better performance in prompt mode compared to everything mode. Additionally, SAM shows remarkable performance in some specific objects and modalities, but is imperfect or even totally fails in other situations. Finally, we analyze the influence of different factors (e.g., the Fourier-based boundary complexity and size of the segmented objects) on SAM's segmentation performance. Extensive experiments validate that SAM's zero-shot segmentation capability is not sufficient to ensure its direct application to the MIS.

Ocular Toxoplasmosis (OT), is a common eye infection caused by T. gondii that can cause vision problems. Diagnosis is typically done through a clinical examination and imaging, but these methods can be complicated and costly, requiring trained personnel. To address this issue, we have created a benchmark study that evaluates the effectiveness of existing pre-trained networks using transfer learning techniques to detect OT from fundus images. Furthermore, we have also analysed the performance of transfer-learning based segmentation networks to segment lesions in the images. This research seeks to provide a guide for future researchers looking to utilise DL techniques and develop a cheap, automated, easy-to-use, and accurate diagnostic method. We have performed in-depth analysis of different feature extraction techniques in order to find the most optimal one for OT classification and segmentation of lesions. For classification tasks, we have evaluated pre-trained models such as VGG16, MobileNetV2, InceptionV3, ResNet50, and DenseNet121 models. Among them, MobileNetV2 outperformed all other models in terms of Accuracy (Acc), Recall, and F1 Score outperforming the second-best model, InceptionV3 by 0.7% higher Acc. However, DenseNet121 achieved the best result in terms of Precision, which was 0.1% higher than MobileNetv2. For the segmentation task, this work has exploited U-Net architecture. In order to utilize transfer learning the encoder block of the traditional U-Net was replaced by MobileNetV2, InceptionV3, ResNet34, and VGG16 to evaluate different architectures moreover two different two different loss functions (Dice loss and Jaccard loss) were exploited in order to find the most optimal one. The MobileNetV2/U-Net outperformed ResNet34 by 0.5% and 2.1% in terms of Acc and Dice Score, respectively when Jaccard loss function is employed during the training.

Large Language Models (LLMs) have demonstrated exceptional performance in a variety of tasks, including essay writing and question answering. However, it is crucial to address the potential misuse of these models, which can lead to detrimental outcomes such as plagiarism and spamming. Recently, several detectors have been proposed, including fine-tuned classifiers and various statistical methods. In this study, we reveal that with the aid of carefully crafted prompts, LLMs can effectively evade these detection systems. We propose a novel Substitution-based In-Context example Optimization method (SICO) to automatically generate such prompts. On three real-world tasks where LLMs can be misused, SICO successfully enables ChatGPT to evade six existing detectors, causing a significant 0.54 AUC drop on average. Surprisingly, in most cases these detectors perform even worse than random classifiers. These results firmly reveal the vulnerability of existing detectors. Finally, the strong performance of SICO suggests itself as a reliable evaluation protocol for any new detector in this field.

Training segmentation models for medical images continues to be challenging due to the limited availability of data annotations. Segment Anything Model (SAM) is a foundation model that is intended to segment user-defined objects of interest in an interactive manner. While the performance on natural images is impressive, medical image domains pose their own set of challenges. Here, we perform an extensive evaluation of SAM's ability to segment medical images on a collection of 19 medical imaging datasets from various modalities and anatomies. We report the following findings: (1) SAM's performance based on single prompts highly varies depending on the dataset and the task, from IoU=0.1135 for spine MRI to IoU=0.8650 for hip X-ray. (2) Segmentation performance appears to be better for well-circumscribed objects with prompts with less ambiguity and poorer in various other scenarios such as the segmentation of brain tumors. (3) SAM performs notably better with box prompts than with point prompts. (4) SAM outperforms similar methods RITM, SimpleClick, and FocalClick in almost all single-point prompt settings. (5) When multiple-point prompts are provided iteratively, SAM's performance generally improves only slightly while other methods' performance improves to the level that surpasses SAM's point-based performance. We also provide several illustrations for SAM's performance on all tested datasets, iterative segmentation, and SAM's behavior given prompt ambiguity. We conclude that SAM shows impressive zero-shot segmentation performance for certain medical imaging datasets, but moderate to poor performance for others. SAM has the potential to make a significant impact in automated medical image segmentation in medical imaging, but appropriate care needs to be applied when using it.

Prompt-based segmentation, also known as interactive segmentation, has recently become a popular approach in image segmentation. A well-designed prompt-based model called Segment Anything Model (SAM) has demonstrated its ability to segment a wide range of natural images, which has sparked a lot of discussion in the community. However, recent studies have shown that SAM performs poorly on medical images. This has motivated us to design a new prompt-based segmentation model specifically for medical image segmentation. In this paper, we combine the prompted-based segmentation paradigm with UNet, which is a widly-recognized successful architecture for medical image segmentation. We have named the resulting model PromptUNet. In order to adapt the real-world clinical use, we expand the existing prompt types in SAM to include novel Supportive Prompts and En-face Prompts. We have evaluated the capabilities of PromptUNet on 19 medical image segmentation tasks using a variety of image modalities, including CT, MRI, ultrasound, fundus, and dermoscopic images. Our results show that PromptUNet outperforms a wide range of state-of-the-art (SOTA) medical image segmentation methods, including nnUNet, TransUNet, UNetr, MedSegDiff, and MSA. Code will be released at: //github.com/WuJunde/PromptUNet.

Enhancing word usage is a desired feature for writing assistance. To further advance research in this area, this paper introduces "Smart Word Suggestions" (SWS) task and benchmark. Unlike other works, SWS emphasizes end-to-end evaluation and presents a more realistic writing assistance scenario. This task involves identifying words or phrases that require improvement and providing substitution suggestions. The benchmark includes human-labeled data for testing, a large distantly supervised dataset for training, and the framework for evaluation. The test data includes 1,000 sentences written by English learners, accompanied by over 16,000 substitution suggestions annotated by 10 native speakers. The training dataset comprises over 3.7 million sentences and 12.7 million suggestions generated through rules. Our experiments with seven baselines demonstrate that SWS is a challenging task. Based on experimental analysis, we suggest potential directions for future research on SWS. The dataset and related codes is available at //github.com/microsoft/SmartWordSuggestions.

This paper explores the use of text data augmentation techniques to enhance conflict and duplicate detection in software engineering tasks through sentence pair classification. The study adapts generic augmentation techniques such as shuffling, back translation, and paraphrasing and proposes new data augmentation techniques such as Noun-Verb Substitution, target-lemma replacement and Actor-Action Substitution for software requirement texts. A comprehensive empirical analysis is conducted on six software text datasets to identify conflicts and duplicates among sentence pairs. The results demonstrate that data augmentation techniques have a significant impact on the performance of all software pair text datasets. On the other hand, in cases where the datasets are relatively balanced, the use of augmentation techniques may result in a negative effect on the classification performance.

The recently-developed infant wearable MAIJU provides a means to automatically evaluate infants' motor performance in an objective and scalable manner in out-of-hospital settings. This information could be used for developmental research and to support clinical decision-making, such as detection of developmental problems and guiding of their therapeutic interventions. MAIJU-based analyses rely fully on the classification of infant's posture and movement; it is hence essential to study ways to increase the accuracy of such classifications, aiming to increase the reliability and robustness of the automated analysis. Here, we investigated how self-supervised pre-training improves performance of the classifiers used for analyzing MAIJU recordings, and we studied whether performance of the classifier models is affected by context-selective quality-screening of pre-training data to exclude periods of little infant movement or with missing sensors. Our experiments show that i) pre-training the classifier with unlabeled data leads to a robust accuracy increase of subsequent classification models, and ii) selecting context-relevant pre-training data leads to substantial further improvements in the classifier performance.

Interest in the field of Explainable Artificial Intelligence has been growing for decades and has accelerated recently. As Artificial Intelligence models have become more complex, and often more opaque, with the incorporation of complex machine learning techniques, explainability has become more critical. Recently, researchers have been investigating and tackling explainability with a user-centric focus, looking for explanations to consider trustworthiness, comprehensibility, explicit provenance, and context-awareness. In this chapter, we leverage our survey of explanation literature in Artificial Intelligence and closely related fields and use these past efforts to generate a set of explanation types that we feel reflect the expanded needs of explanation for today's artificial intelligence applications. We define each type and provide an example question that would motivate the need for this style of explanation. We believe this set of explanation types will help future system designers in their generation and prioritization of requirements and further help generate explanations that are better aligned to users' and situational needs.

While deep learning strategies achieve outstanding results in computer vision tasks, one issue remains. The current strategies rely heavily on a huge amount of labeled data. In many real-world problems it is not feasible to create such an amount of labeled training data. Therefore, researchers try to incorporate unlabeled data into the training process to reach equal results with fewer labels. Due to a lot of concurrent research, it is difficult to keep track of recent developments. In this survey we provide an overview of often used techniques and methods in image classification with fewer labels. We compare 21 methods. In our analysis we identify three major trends. 1. State-of-the-art methods are scaleable to real world applications based on their accuracy. 2. The degree of supervision which is needed to achieve comparable results to the usage of all labels is decreasing. 3. All methods share common techniques while only few methods combine these techniques to achieve better performance. Based on all of these three trends we discover future research opportunities.

北京阿比特科技有限公司