Verification of discrete time or continuous time dynamical systems over the reals is known to be undecidable. It is however known that undecidability does not hold for various classes of systems: if robustness is defined as the fact that reachability relation is stable under infinitesimal perturbation, then their reachability relation is decidable. In other words, undecidability implies sensitivity under infinitesimal perturbation, a property usually not expected in systems considered in practice, and hence can be seen (somehow informally) as an artefact of the theory, that always assumes exactness. In a similar vein, it is known that, while undecidability holds for logical formulas over the reals, it does not hold when considering delta-undecidability: one must determine whether a property is true, or $\delta$-far from being true. We first extend the previous statements to a theory for general (discrete time, continuous-time, and even hybrid) dynamical systems, and we relate the two approaches. We also relate robustness to some geometric properties of reachability relation. But mainly, when a system is robust, it then makes sense to quantify at which level of perturbation. We prove that assuming robustness to polynomial perturbations on precision leads to reachability verifiable in complexity class PSPACE, and even to a characterization of this complexity class. We prove that assuming robustness to polynomial perturbations on time or length of trajectories leads to similar statements, but with PTIME. It has been recently unexpectedly shown that the length of a solution of a polynomial ordinary differential equation corresponds to a time of computation: PTIME corresponds to solutions of polynomial differential equations of polynomial length. Our results argue that the answer is given by precision: space corresponds to the involved precision.
Modern ML predictions models are surprisingly accurate in practice and incorporating their power into algorithms has led to a new research direction. Algorithms with predictions have already been used to improve on worst-case optimal bounds for online problems and for static graph problems. With this work, we initiate the study of the complexity of {\em data structures with predictions}, with an emphasis on dynamic graph problems. Unlike the independent work of v.d.~Brand et al.~[arXiv:2307.09961] that aims at upper bounds, our investigation is focused on establishing conditional fine-grained lower bounds for various notions of predictions. Our lower bounds are conditioned on the Online Matrix Vector (OMv) hypothesis. First we show that a prediction-based algorithm for OMv provides a smooth transition between the known bounds, for the offline and the online setting, and then show that this algorithm is essentially optimal under the OMv hypothesis. Further, we introduce and study four different kinds of predictions. (1) For {\em $\varepsilon$-accurate predictions}, where $\varepsilon \in (0,1)$, we show that any lower bound from the non-prediction setting carries over, reduced by a factor of $1-\varepsilon$. (2) For {\em $L$-list accurate predictions}, we show that one can efficiently compute a $(1/L)$-accurate prediction from an $L$-list accurate prediction. (3) For {\em bounded delay predictions} and {\em bounded delay predictions with outliers}, we show that a lower bound from the non-prediction setting carries over, if the reduction fulfills a certain reordering condition (which is fulfilled by many reductions from OMv for dynamic graph problems). This is demonstrated by showing lower and almost tight upper bounds for a concrete, dynamic graph problem, called $\# s \textrm{-} \triangle$, where the number of triangles that contain a fixed vertex $s$ must be reported.
Preserving the topology from being inferred by external adversaries has become a paramount security issue for network systems (NSs), and adding random noises to the nodal states provides a promising way. Nevertheless, recent works have revealed that the topology cannot be preserved under i.i.d. noises in the asymptotic sense. How to effectively characterize the non-asymptotic preservation performance still remains an open issue. Inspired by the deviation quantification of concentration inequalities, this paper proposes a novel metric named trace-based variance-expectation ratio. This metric effectively captures the decaying rate of the topology inference error, where a slower rate indicates better non-asymptotic preservation performance. We prove that the inference error will always decay to zero asymptotically, as long as the added noises are non-increasing and independent (milder than the i.i.d. condition). Then, the optimal noise design that produces the slowest decaying rate for the error is obtained. More importantly, we amend the noise design by introducing one-lag time dependence, achieving the zero state deviation and the non-zero topology inference error in the asymptotic sense simultaneously. Extensions to a general class of noises with multi-lag time dependence are provided. Comprehensive simulations verify the theoretical findings.
We present categories of open dynamical systems with general time evolution as categories of coalgebras opindexed by polynomial interfaces, and show how this extends the coalgebraic framework to capture common scientific applications such as ordinary differential equations, open Markov processes, and random dynamical systems. We then extend Spivak's operad Org to this setting, and construct associated monoidal categories whose morphisms represent hierarchical open systems; when their interfaces are simple, these categories supply canonical comonoid structures. We exemplify these constructions using the 'Laplace doctrine', which provides dynamical semantics for active inference, and indicate some connections to Bayesian inversion and coalgebraic logic.
If $X$ is a subset of vertices of a graph $G$, then vertices $u$ and $v$ are $X$-visible if there exists a shortest $u,v$-path $P$ such that $V(P)\cap X \subseteq \{u,v\}$. If each two vertices from $X$ are $X$-visible, then $X$ is a mutual-visibility set. The mutual-visibility number of $G$ is the cardinality of a largest mutual-visibility set of $G$ and has been already investigated. In this paper a variety of mutual-visibility problems is introduced based on which natural pairs of vertices are required to be $X$-visible. This yields the total, the dual, and the outer mutual-visibility numbers. We first show that these graph invariants are related to each other and to the classical mutual-visibility number, and then we prove that the three newly introduced mutual-visibility problems are computationally difficult. According to this result, we compute or bound their values for several graphs classes that include for instance grid graphs and tori. We conclude the study by presenting some inter-comparison between the values of such parameters, which is based on the computations we made for some specific families.
In the current industry, the development of optimized mechanical components able to satisfy the customer requirements evolves quickly. Therefore, companies are asked for efficient solutions to improve their products in terms of stiffness and strength. In this sense, Topology Optimization has been extensively used to determine the best topology of structural components from the mechanical point of view. Its main objective is to distribute a given amount of material into a predefined domain to reach the maximum overall stiffness of the component. Besides, high-resolution solutions are essential to define the final distribution of material. Standard Topological Optimization tools are able to propose an optimal topology for the whole component, but when small topological details are required (i.e. trabecular-type structures) the computational cost is prohibitive. In order to mitigate this issue, the present work proposes a two-level topology optimization method to solve high-resolution problems by using density-based methods. The proposed methodology includes three steps: The first one subdivides the whole component in cells and generates a coarse optimized low-definition material distribution assigning one different density to each cell. The second one uses an equilibrating technique that provides tractions continuity between adjacent cells, thus ensuring the material inter-cell continuity after the cells optimization process. Finally, each cell is optimized at fine scale taking as input data the densities and the equilibrated tractions obtained from the macro problem. The main goal of this work is to efficiently solve high-resolution topology optimization problems using density-based methods, which would be unaffordable with standard computing facilities and the current methodologies.
Towards safe autonomous driving (AD), we consider the problem of learning models that accurately capture the diversity and tail quantiles of human driver behavior probability distributions, in interaction with an AD vehicle. Such models, which predict drivers' continuous actions from their states, are particularly relevant for closing the gap between AD agent simulations and reality. To this end, we adapt two flexible quantile learning frameworks for this setting that avoid strong distributional assumptions: (1) quantile regression (based on the titled absolute loss), and (2) autoregressive quantile flows (a version of normalizing flows). Training happens in a behavior cloning-fashion. We use the highD dataset consisting of driver trajectories on several highways. We evaluate our approach in a one-step acceleration prediction task, and in multi-step driver simulation rollouts. We report quantitative results using the tilted absolute loss as metric, give qualitative examples showing that realistic extremal behavior can be learned, and discuss the main insights.
Non-linear model predictive control (nMPC) is a powerful approach to control complex robots (such as humanoids, quadrupeds, or unmanned aerial manipulators (UAMs)) as it brings important advantages over other existing techniques. The full-body dynamics, along with the prediction capability of the optimal control problem (OCP) solved at the core of the controller, allows to actuate the robot in line with its dynamics. This fact enhances the robot capabilities and allows, e.g., to perform intricate maneuvers at high dynamics while optimizing the amount of energy used. Despite the many similarities between humanoids or quadrupeds and UAMs, full-body torque-level nMPC has rarely been applied to UAMs. This paper provides a thorough description of how to use such techniques in the field of aerial manipulation. We give a detailed explanation of the different parts involved in the OCP, from the UAM dynamical model to the residuals in the cost function. We develop and compare three different nMPC controllers: Weighted MPC, Rail MPC, and Carrot MPC, which differ on the structure of their OCPs and on how these are updated at every time step. To validate the proposed framework, we present a wide variety of simulated case studies. First, we evaluate the trajectory generation problem, i.e., optimal control problems solved offline, involving different kinds of motions (e.g., aggressive maneuvers or contact locomotion) for different types of UAMs. Then, we assess the performance of the three nMPC controllers, i.e., closed-loop controllers solved online, through a variety of realistic simulations. For the benefit of the community, we have made available the source code related to this work.
Latent linear dynamical systems with Bernoulli observations provide a powerful modeling framework for identifying the temporal dynamics underlying binary time series data, which arise in a variety of contexts such as binary decision-making and discrete stochastic processes (e.g., binned neural spike trains). Here we develop a spectral learning method for fast, efficient fitting of probit-Bernoulli latent linear dynamical system (LDS) models. Our approach extends traditional subspace identification methods to the Bernoulli setting via a transformation of the first and second sample moments. This results in a robust, fixed-cost estimator that avoids the hazards of local optima and the long computation time of iterative fitting procedures like the expectation-maximization (EM) algorithm. In regimes where data is limited or assumptions about the statistical structure of the data are not met, we demonstrate that the spectral estimate provides a good initialization for Laplace-EM fitting. Finally, we show that the estimator provides substantial benefits to real world settings by analyzing data from mice performing a sensory decision-making task.
The quantum dense output problem is the process of evaluating time-accumulated observables from time-dependent quantum dynamics using quantum computers. This problem arises frequently in applications such as quantum control and spectroscopic computation. We present a range of algorithms designed to operate on both early and fully fault-tolerant quantum platforms. These methodologies draw upon techniques like amplitude estimation, Hamiltonian simulation, quantum linear Ordinary Differential Equation (ODE) solvers, and quantum Carleman linearization. We provide a comprehensive complexity analysis with respect to the evolution time $T$ and error tolerance $\epsilon$. Our results demonstrate that the linearization approach can nearly achieve optimal complexity $\mathcal{O}(T/\epsilon)$ for a certain type of low-rank dense outputs. Moreover, we provide a linearization of the dense output problem that yields an exact and finite-dimensional closure which encompasses the original states. This formulation is related to the Koopman Invariant Subspace theory and may be of independent interest in nonlinear control and scientific machine learning.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.