亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Classification of time series is a growing problem in different disciplines due to the progressive digitalization of the world. Currently, the state-of-the-art in time series classification is dominated by The Hierarchical Vote Collective of Transformation-based Ensembles. This algorithm is composed of several classifiers of different domains distributed in five large modules. The combination of the results obtained by each module weighed based on an internal evaluation process allows this algorithm to obtain the best results in state-of-the-art. One Nearest Neighbour with Dynamic Time Warping remains the base classifier in any time series classification problem for its simplicity and good results. Despite their performance, they share a weakness, which is that they are not interpretable. In the field of time series classification, there is a tradeoff between accuracy and interpretability. In this work, we propose a set of characteristics capable of extracting information on the structure of the time series to face time series classification problems. The use of these characteristics allows the use of traditional classification algorithms in time series problems. The experimental results of our proposal show no statistically significant differences from the second and third best models of the state-of-the-art. Apart from competitive results in accuracy, our proposal is able to offer interpretable results based on the set of characteristics proposed

相關內容

In this work, we propose GLUE (Graph Deviation Network with Local Uncertainty Estimation), building on the recently proposed Graph Deviation Network (GDN). GLUE not only automatically learns complex dependencies between variables and uses them to better identify anomalous behavior, but also quantifies its predictive uncertainty, allowing us to account for the variation in the data as well to have more interpretable anomaly detection thresholds. Results on two real world datasets tell us that optimizing the negative Gaussian log likelihood is reasonable because GLUE's forecasting results are at par with GDN and in fact better than the vector autoregressor baseline, which is significant given that GDN directly optimizes the MSE loss. In summary, our experiments demonstrate that GLUE is competitive with GDN at anomaly detection, with the added benefit of uncertainty estimations. We also show that GLUE learns meaningful sensor embeddings which clusters similar sensors together.

Modeling non-Euclidean data is drawing attention along with the unprecedented successes of deep neural networks in diverse fields. In particular, symmetric positive definite (SPD) matrix is being actively studied in computer vision, signal processing, and medical image analysis, thanks to its ability to learn appropriate statistical representations. However, due to its strong constraints, it remains challenging for optimization problems or inefficient computation costs, especially, within a deep learning framework. In this paper, we propose to exploit a diffeomorphism mapping between Riemannian manifolds and a Cholesky space, by which it becomes feasible not only to efficiently solve optimization problems but also to reduce computation costs greatly. Further, in order for dynamics modeling in time series data, we devise a continuous manifold learning method by integrating a manifold ordinary differential equation and a gated recurrent neural network in a systematic manner. It is noteworthy that because of the nice parameterization of matrices in a Cholesky space, it is straightforward to train our proposed network with Riemannian geometric metrics equipped. We demonstrate through experiments that the proposed model can be efficiently and reliably trained as well as outperform existing manifold methods and state-of-the-art methods in two classification tasks: action recognition and sleep staging classification.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In information retrieval (IR) and related tasks, term weighting approaches typically consider the frequency of the term in the document and in the collection in order to compute a score reflecting the importance of the term for the document. In tasks characterized by the presence of training data (such as text classification) it seems logical that the term weighting function should take into account the distribution (as estimated from training data) of the term across the classes of interest. Although `supervised term weighting' approaches that use this intuition have been described before, they have failed to show consistent improvements. In this article we analyse the possible reasons for this failure, and call consolidated assumptions into question. Following this criticism we propose a novel supervised term weighting approach that, instead of relying on any predefined formula, learns a term weighting function optimised on the training set of interest; we dub this approach \emph{Learning to Weight} (LTW). The experiments that we run on several well-known benchmarks, and using different learning methods, show that our method outperforms previous term weighting approaches in text classification.

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.

We present a new approach for learning graph embeddings, that relies on structural measures of node similarities for generation of training data. The model learns node embeddings that are able to approximate a given measure, such as the shortest path distance or any other. Evaluations of the proposed model on semantic similarity and word sense disambiguation tasks (using WordNet as the source of gold similarities) show that our method yields state-of-the-art results, but also is capable in certain cases to yield even better performance than the input similarity measure. The model is computationally efficient, orders of magnitude faster than the direct computation of graph distances.

Because of continuous advances in mathematical programing, Mix Integer Optimization has become a competitive vis-a-vis popular regularization method for selecting features in regression problems. The approach exhibits unquestionable foundational appeal and versatility, but also poses important challenges. We tackle these challenges, reducing computational burden when tuning the sparsity bound (a parameter which is critical for effectiveness) and improving performance in the presence of feature collinearity and of signals that vary in nature and strength. Importantly, we render the approach efficient and effective in applications of realistic size and complexity - without resorting to relaxations or heuristics in the optimization, or abandoning rigorous cross-validation tuning. Computational viability and improved performance in subtler scenarios is achieved with a multi-pronged blueprint, leveraging characteristics of the Mixed Integer Programming framework and by means of whitening, a data pre-processing step.

Generating character-level features is an important step for achieving good results in various natural language processing tasks. To alleviate the need for human labor in generating hand-crafted features, methods that utilize neural architectures such as Convolutional Neural Network (CNN) or Recurrent Neural Network (RNN) to automatically extract such features have been proposed and have shown great results. However, CNN generates position-independent features, and RNN is slow since it needs to process the characters sequentially. In this paper, we propose a novel method of using a densely connected network to automatically extract character-level features. The proposed method does not require any language or task specific assumptions, and shows robustness and effectiveness while being faster than CNN- or RNN-based methods. Evaluating this method on three sequence labeling tasks - slot tagging, Part-of-Speech (POS) tagging, and Named-Entity Recognition (NER) - we obtain state-of-the-art performance with a 96.62 F1-score and 97.73% accuracy on slot tagging and POS tagging, respectively, and comparable performance to the state-of-the-art 91.13 F1-score on NER.

This work addresses the task of multilabel image classification. Inspired by the great success from deep convolutional neural networks (CNNs) for single-label visual-semantic embedding, we exploit extending these models for multilabel images. Specifically, we propose an image-dependent ranking model, which returns a ranked list of labels according to its relevance to the input image. In contrast to conventional CNN models that learn an image representation (i.e. the image embedding vector), the developed model learns a mapping (i.e. a transformation matrix) from an image in an attempt to differentiate between its relevant and irrelevant labels. Despite the conceptual simplicity of our approach, experimental results on a public benchmark dataset demonstrate that the proposed model achieves state-of-the-art performance while using fewer training images than other multilabel classification methods.

The Residual Networks of Residual Networks (RoR) exhibits excellent performance in the image classification task, but sharply increasing the number of feature map channels makes the characteristic information transmission incoherent, which losses a certain of information related to classification prediction, limiting the classification performance. In this paper, a Pyramidal RoR network model is proposed by analysing the performance characteristics of RoR and combining with the PyramidNet. Firstly, based on RoR, the Pyramidal RoR network model with channels gradually increasing is designed. Secondly, we analysed the effect of different residual block structures on performance, and chosen the residual block structure which best favoured the classification performance. Finally, we add an important principle to further optimize Pyramidal RoR networks, drop-path is used to avoid over-fitting and save training time. In this paper, image classification experiments were performed on CIFAR-10/100 and SVHN datasets, and we achieved the current lowest classification error rates were 2.96%, 16.40% and 1.59%, respectively. Experiments show that the Pyramidal RoR network optimization method can improve the network performance for different data sets and effectively suppress the gradient disappearance problem in DCNN training.

北京阿比特科技有限公司