Anomaly detection is important in many real-life applications. Recently, self-supervised learning has greatly helped deep anomaly detection by recognizing several geometric transformations. However these methods lack finer features, usually highly depend on the anomaly type, and do not perform well on fine-grained problems. To address these issues, we first introduce in this work three novel and efficient discriminative and generative tasks which have complementary strength: (i) a piece-wise jigsaw puzzle task focuses on structure cues; (ii) a tint rotation recognition is used within each piece, taking into account the colorimetry information; (iii) and a partial re-colorization task considers the image texture. In order to make the re-colorization task more object-oriented than background-oriented, we propose to include the contextual color information of the image border via an attention mechanism. We then present a new out-of-distribution detection function and highlight its better stability compared to existing methods. Along with it, we also experiment different score fusion functions. Finally, we evaluate our method on an extensive protocol composed of various anomaly types, from object anomalies, style anomalies with fine-grained classification to local anomalies with face anti-spoofing datasets. Our model significantly outperforms state-of-the-art with up to 36% relative error improvement on object anomalies and 40% on face anti-spoofing problems.
Learning discriminative features for effectively separating abnormal events from normality is crucial for weakly supervised video anomaly detection (WS-VAD) tasks. Existing approaches, both video and segment-level label oriented, mainly focus on extracting representations for anomaly data while neglecting the implication of normal data. We observe that such a scheme is sub-optimal, i.e., for better distinguishing anomaly one needs to understand what is a normal state, and may yield a higher false alarm rate. To address this issue, we propose an Uncertainty Regulated Dual Memory Units (UR-DMU) model to learn both the representations of normal data and discriminative features of abnormal data. To be specific, inspired by the traditional global and local structure on graph convolutional networks, we introduce a Global and Local Multi-Head Self Attention (GL-MHSA) module for the Transformer network to obtain more expressive embeddings for capturing associations in videos. Then, we use two memory banks, one additional abnormal memory for tackling hard samples, to store and separate abnormal and normal prototypes and maximize the margins between the two representations. Finally, we propose an uncertainty learning scheme to learn the normal data latent space, that is robust to noise from camera switching, object changing, scene transforming, etc. Extensive experiments on XD-Violence and UCF-Crime datasets demonstrate that our method outperforms the state-of-the-art methods by a sizable margin.
The point cloud based 3D single object tracking has drawn increasing attention. Although many breakthroughs have been achieved, we also reveal two severe issues. By extensive analysis, we find the prediction manner of current approaches is non-robust, i.e., exposing a misalignment gap between prediction score and actually localization accuracy. Another issue is the sparse point returns will damage the feature matching procedure of the SOT task. Based on these insights, we introduce two novel modules, i.e., Adaptive Refine Prediction (ARP) and Target Knowledge Transfer (TKT), to tackle them, respectively. To this end, we first design a strong pipeline to extract discriminative features and conduct the matching with the attention mechanism. Then, ARP module is proposed to tackle the misalignment issue by aggregating all predicted candidates with valuable clues. Finally, TKT module is designed to effectively overcome incomplete point cloud due to sparse and occlusion issues. We call our overall framework PCET. By conducting extensive experiments on the KITTI and Waymo Open Dataset, our model achieves state-of-the-art performance while maintaining a lower computational cost.
Anomaly detection (AD) is a crucial task in machine learning with various applications, such as detecting emerging diseases, identifying financial frauds, and detecting fake news. However, obtaining complete, accurate, and precise labels for AD tasks can be expensive and challenging due to the cost and difficulties in data annotation. To address this issue, researchers have developed AD methods that can work with incomplete, inexact, and inaccurate supervision, collectively summarized as weakly supervised anomaly detection (WSAD) methods. In this study, we present the first comprehensive survey of WSAD methods by categorizing them into the above three weak supervision settings across four data modalities (i.e., tabular, graph, time-series, and image/video data). For each setting, we provide formal definitions, key algorithms, and potential future directions. To support future research, we conduct experiments on a selected setting and release the source code, along with a collection of WSAD methods and data.
Even though auto-encoders (AEs) have the desirable property of learning compact representations without labels and have been widely applied to out-of-distribution (OoD) detection, they are generally still poorly understood and are used incorrectly in detecting outliers where the normal and abnormal distributions are strongly overlapping. In general, the learned manifold is assumed to contain key information that is only important for describing samples within the training distribution, and that the reconstruction of outliers leads to high residual errors. However, recent work suggests that AEs are likely to be even better at reconstructing some types of OoD samples. In this work, we challenge this assumption and investigate what auto-encoders actually learn when they are posed to solve two different tasks. First, we propose two metrics based on the Fr\'echet inception distance (FID) and confidence scores of a trained classifier to assess whether AEs can learn the training distribution and reliably recognize samples from other domains. Second, we investigate whether AEs are able to synthesize normal images from samples with abnormal regions, on a more challenging lung pathology detection task. We have found that state-of-the-art (SOTA) AEs are either unable to constrain the latent manifold and allow reconstruction of abnormal patterns, or they are failing to accurately restore the inputs from their latent distribution, resulting in blurred or misaligned reconstructions. We propose novel deformable auto-encoders (MorphAEus) to learn perceptually aware global image priors and locally adapt their morphometry based on estimated dense deformation fields. We demonstrate superior performance over unsupervised methods in detecting OoD and pathology.
Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.
Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of such perception system especially for the sake of path planning, motion prediction, collision avoidance, etc. Generally, stereo or monocular images with corresponding 3D point clouds are already standard layout for 3D object detection, out of which point clouds are increasingly prevalent with accurate depth information being provided. Despite existing efforts, 3D object detection on point clouds is still in its infancy due to high sparseness and irregularity of point clouds by nature, misalignment view between camera view and LiDAR bird's eye of view for modality synergies, occlusions and scale variations at long distances, etc. Recently, profound progress has been made in 3D object detection, with a large body of literature being investigated to address this vision task. As such, we present a comprehensive review of the latest progress in this field covering all the main topics including sensors, fundamentals, and the recent state-of-the-art detection methods with their pros and cons. Furthermore, we introduce metrics and provide quantitative comparisons on popular public datasets. The avenues for future work are going to be judiciously identified after an in-deep analysis of the surveyed works. Finally, we conclude this paper.
Weakly-Supervised Object Detection (WSOD) and Localization (WSOL), i.e., detecting multiple and single instances with bounding boxes in an image using image-level labels, are long-standing and challenging tasks in the CV community. With the success of deep neural networks in object detection, both WSOD and WSOL have received unprecedented attention. Hundreds of WSOD and WSOL methods and numerous techniques have been proposed in the deep learning era. To this end, in this paper, we consider WSOL is a sub-task of WSOD and provide a comprehensive survey of the recent achievements of WSOD. Specifically, we firstly describe the formulation and setting of the WSOD, including the background, challenges, basic framework. Meanwhile, we summarize and analyze all advanced techniques and training tricks for improving detection performance. Then, we introduce the widely-used datasets and evaluation metrics of WSOD. Lastly, we discuss the future directions of WSOD. We believe that these summaries can help pave a way for future research on WSOD and WSOL.
The considerable significance of Anomaly Detection (AD) problem has recently drawn the attention of many researchers. Consequently, the number of proposed methods in this research field has been increased steadily. AD strongly correlates with the important computer vision and image processing tasks such as image/video anomaly, irregularity and sudden event detection. More recently, Deep Neural Networks (DNNs) offer a high performance set of solutions, but at the expense of a heavy computational cost. However, there is a noticeable gap between the previously proposed methods and an applicable real-word approach. Regarding the raised concerns about AD as an ongoing challenging problem, notably in images and videos, the time has come to argue over the pitfalls and prospects of methods have attempted to deal with visual AD tasks. Hereupon, in this survey we intend to conduct an in-depth investigation into the images/videos deep learning based AD methods. We also discuss current challenges and future research directions thoroughly.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
Generic object detection, aiming at locating object instances from a large number of predefined categories in natural images, is one of the most fundamental and challenging problems in computer vision. Deep learning techniques have emerged in recent years as powerful methods for learning feature representations directly from data, and have led to remarkable breakthroughs in the field of generic object detection. Given this time of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought by deep learning techniques. More than 250 key contributions are included in this survey, covering many aspects of generic object detection research: leading detection frameworks and fundamental subproblems including object feature representation, object proposal generation, context information modeling and training strategies; evaluation issues, specifically benchmark datasets, evaluation metrics, and state of the art performance. We finish by identifying promising directions for future research.